4 research outputs found

    Estimation of repertoire diversity using multinomial model.

    No full text
    <p><b>A.</b> Rarefaction analysis of repertoire samples from healthy donors and multiple sclerosis patients. The number of unique clonotypes in a sub-sample plotted against its size (number of T-cell receptor cDNA molecules, TRBM). Solid and dashed lines are diversity estimates computed by interpolating and extrapolating using a multinomial model respectively [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004503#pcbi.1004503.ref029" target="_blank">29</a>]. Note that generally rarefaction curves for MS samples go below those of control donors. Post-HSCT sample (MS8-HSCT) displays the lowest diversity. <b>B.</b> Comparison of repertoire diversity using normalized Chao1 estimate. Normalization is performed by down-sampling datasets to the size of smallest dataset and computing the estimate for resulting datasets (mean estimate value from n = 3 re-samples is used). MS8-HSCT sample is discarded from calculations. *—P = 0.022, two-tailed T-test; effect size estimated by Cohen’s d is 0.98.</p

    Overview of VDJtools software package.

    No full text
    <p>VDJtools analysis routines can be grouped into 6 modules and are applicable to results produced by commonly used immune repertoire sequencing processing software. Basic statistics and segment usage module include general statistics (clonotype and read count, number and frequency of non-coding clonotypes, convergent recombination of CDR3 amino acid sequences, insert size statistics, etc), spectratyping (distribution of clonotype frequency by CDR3 length), Variable and Joining segment usage profiles and their pairing frequency in re-arranged receptor junction sequences. Repertoire overlap module includes routines for computing sets of overlapping clonotypes and their characteristics, and scatter plots of clonotype frequencies. Diversity analysis includes routines for visualizing clonotype frequency distribution, computing repertoire diversity estimates and rarefaction plots. The fourth set of routines can be used to create clonotype abundance profiles and track clonotypes in time course of vaccination, myeloablation and blood cell transplant. Sample clustering is implemented based on computed repertoire similarity measures and could be used to distinguish various biological conditions, cell subsets and tissues. Auxiliary routines provide means for clonotype table filtering (e.g. by segment usage or non-coding CDR3 sequence) as well as annotation with custom or pre-built pathogen-specific clonotype database. VDJtools can be incorporated in Java programming language-based pipelines as demonstrated by VDJviz clonotype browser.</p
    corecore