3 research outputs found

    Comparative Evaluation of Custom-Made Components and Standard Implants for Acetabular Reconstruction in Revision Total Hip Arthroplasty

    Get PDF
    Background.The use of custom-made acetabular components is one of the promising methods for reconstruction of the acetabulum in cases of significant defects, including those associated with pelvic bone dissociation. It allows achieving stable fixation and restoring the biomechanics of the hip joint. Aimofthestudy to compare the results of using individually designed components, supportive antiprotrusion rings, augments, and hemispherical components in revision total hip arthroplasty for type IIIB bone defects according to Paprosky classification. Methods.The study analyzed the treatment outcomes of 90 patients with type IIIB bone defects who underwent revision total hip arthroplasty between 2017 and 2022. Patients were divided into three groups: the first group received individually designed acetabular components, the second group received augments with hemispheres, and the third group had antiprotrusion cages implanted. The analysis included the reasons for revision surgery, operation duration, blood loss volume, and type of revision procedure. Pain and functional outcomes were assessed with WOMAC, Harris Hip Score, and VAS scales. Results.3D-printed constructs were more frequently implanted in patients with pelvic bone dissociation. The first group showed a significantly positive dynamic in functional outcomes. Complications were diagnosed in 27 (30%) cases: joint instability (dislocation) in 10 (11.1%) patients, periprosthetic infection in 8 (8.8%), aseptic loosening in 4 (4.4%), and sciatic nerve neuropathy in 5 (5.5%) patients. The number of these complications was higher in the second and third groups of patients. Conclusion.Custom-made implants using 3D technologies are a preferable option for revision total hip arthroplasty in patients with type IIIB defects according to Paprosky classification, especially in cases of pelvic bone dissociation

    Sequencing, biochemical characterization, crystal structure and molecular dynamics of cellobiohydrolase Cel7A from Geotrichum candidum

    No full text
    The ascomycete Geotrichum candidum is a versatile and efficient decay fungus that is involved, for example, in biodeterioration of compact discs; notably, the 3C strain was previously shown to degrade filter paper and cotton more efficiently than several industrial enzyme preparations. Glycoside hydrolase (GH) family 7 cellobiohydrolases (CBHs) are the primary constituents of industrial cellulase cocktails employed in biomass conversion, and feature tunnel-enclosed active sites that enable processive hydrolytic cleavage of cellulose chains. Understanding the structure-function relationships defining the activity and stability of GH7 CBHs is thus of keen interest. Accordingly, we report the comprehensive characterization of the GH7 CBH secreted by G. candidum (GcaCel7A). The bimodular cellulase consists of a family 1 cellulose-binding module (CBM) and linker connected to a GH7 catalytic domain that shares 64% sequence identity with the archetypal industrial GH7 CBH of Hypocrea jecorina (HjeCel7A). GcaCel7A shows activity on Avicel cellulose similar to HjeCel7A, with less product inhibition, but has a lower temperature optimum (50 °C versus 60-65 °C, respectively). Five crystal structures, with and without bound thio-oligosaccharides, show conformational diversity of tunnel-enclosing loops, including a form with partial tunnel collapse at subsite -4 not reported previously in GH7. Also, the first O-glycosylation site in a GH7 crystal structure is reported - on a loop where the glycan probably influences loop contacts across the active site and interactions with the cellulose surface. The GcaCel7A structures indicate higher loop flexibility than HjeCel7A, in accordance with sequence modifications. However, GcaCel7A retains small fluctuations in molecular simulations, suggesting high processivity and low endo-initiation probability, similar to HjeCel7A. Database Structural data are available in the Protein Data Bank under the accession numbers 5AMP, 4ZZV, 4ZZW, 4ZZT, and 4ZZU. The Geotrichum candidum GH family 7 cellobiohydrolase nucleotide sequence is available in GenBank under accession number KJ958925. Enzymes Glycoside hydrolase family 7 reducing end acting cellobiohydrolase We report the characterization of the GH7 CBH secreted by ascomycete G. candidum (GcaCel7A). X-ray data revealed the first O-glycosylation in a GH7 crystal structure on a loop where the glycan influences loop contacts and interactions with the cellulose surface. Even though GcaCel7A structures indicate higher loop flexibility than H. jecorina Cel7A, molecular simulations suggest high processivity and low endo-initiation probability similar to HjeCel7A.</p
    corecore