5 research outputs found

    Exact static solutions for discrete Ï•4\phi^4 models free of the Peierls-Nabarro barrier: Discretized first integral approach

    Get PDF
    We propose a generalization of the discrete Klein-Gordon models free of the Peierls-Nabarro barrier derived in Nonlinearity {\bf 12}, 1373 (1999) and Phys. Rev. E {\bf 72}, 035602(R) (2005), such that they support not only kinks but a one-parameter set of exact static solutions. These solutions can be obtained iteratively from a two-point nonlinear map whose role is played by the discretized first integral of the static Klein-Gordon field, as suggested in J. Phys. A {\bf 38}, 7617 (2005). We then discuss some discrete Ï•4\phi^4 models free of the Peierls-Nabarro barrier and identify for them the full space of available static solutions, including those derived recently in Phys. Rev. E {\bf 72} 036605 (2005) but not limited to them. These findings are also relevant to standing wave solutions of discrete nonlinear Schr{\"o}dinger models. We also study stability of the obtained solutions. As an interesting aside, we derive the list of solutions to the continuum Ï•4\phi^4 equation that fill the entire two-dimensional space of parameters obtained as the continuum limit of the corresponding space of the discrete models.Comment: Accepted for publication in PRE; the M/S has been revised in line with the referee repor

    Discrete Klein-Gordon models with static kinks free of the Peierls-Nabarro potential

    Get PDF
    For the nonlinear Klein-Gordon type models, we describe a general method of discretization in which the static kink can be placed anywhere with respect to the lattice. These discrete models are therefore free of the {\it static} Peierls-Nabarro potential. Previously reported models of this type are shown to belong to a wider class of models derived by means of the proposed method. A relevant physical consequence of our findings is the existence of a wide class of discrete Klein-Gordon models where slow kinks {\it practically} do not experience the action of the Peierls-Nabarro potential. Such kinks are not trapped by the lattice and they can be accelerated by even weak external fields.Comment: 6 pages, 2 figure

    Kinks in dipole chains

    Full text link
    It is shown that the topological discrete sine-Gordon system introduced by Speight and Ward models the dynamics of an infinite uniform chain of electric dipoles constrained to rotate in a plane containing the chain. Such a chain admits a novel type of static kink solution which may occupy any position relative to the spatial lattice and experiences no Peierls-Nabarro barrier. Consequently the dynamics of a single kink is highly continuum like, despite the strongly discrete nature of the model. Static multikinks and kink-antikink pairs are constructed, and it is shown that all such static solutions are unstable. Exact propagating kinks are sought numerically using the pseudo-spectral method, but it is found that none exist, except, perhaps, at very low speed.Comment: Published version. 21 pages, 5 figures. Section 3 completely re-written. Conclusions unchange

    Travelling kinks in discrete phi^4 models

    Full text link
    In recent years, three exceptional discretizations of the phi^4 theory have been discovered [J.M. Speight and R.S. Ward, Nonlinearity 7, 475 (1994); C.M. Bender and A. Tovbis, J. Math. Phys. 38, 3700 (1997); P.G. Kevrekidis, Physica D 183, 68 (2003)] which support translationally invariant kinks, i.e. families of stationary kinks centred at arbitrary points between the lattice sites. It has been suggested that the translationally invariant stationary kinks may persist as 'sliding kinks', i.e. discrete kinks travelling at nonzero velocities without experiencing any radiation damping. The purpose of this study is to check whether this is indeed the case. By computing the Stokes constants in beyond-all-order asymptotic expansions, we prove that the three exceptional discretizations do not support sliding kinks for most values of the velocity - just like the standard, one-site, discretization. There are, however, isolated values of velocity for which radiationless kink propagation becomes possible. There is one such value for the discretization of Speight and Ward and three 'sliding velocities' for the model of Kevrekedis.Comment: To be published in Nonlinearity. 22 pages, 5 figures. Extensive clarifications to the text have been mad
    corecore