255 research outputs found

    Temperature Dependence of Blue Phosphorescent Cyclometalated Ir(III) Complexes

    Get PDF
    The photophysical properties for a series of facial (fac) cyclometalated Ir(III) complexes (fac-Ir(C^N)_3 (C^N = 2-phenylpyridyl (ppy), 2-(4,6-difluorophenyl)pyridyl (F2ppy), 1-phenylpyrazolyl (ppz), 1-(2,4-difluorophenyl)pyrazolyl) (F2ppz), and 1-(2-(9,9′-dimethylfluorenyl))pyrazolyl (flz)), fac-Ir(C^N)_2(C^N′) (C^N = ppz or F2ppz and C^N′ = ppy or F2ppy), and fac-Ir(CC′)_3 (C^C′ = 1-phenyl-3-methylbenzimidazolyl (pmb)) have been studied in dilute 2-methyltetrahydrofuran (2-MeTHF) solution in a temperature range of 77−378 K. Photoluminescent quantum yields (Φ) for the 10 compounds at room temperature vary between near zero and unity, whereas all emit with high efficiency at low temperature (77 K). The quantum yield for fac-Ir(ppy)_3 (Φ = 0.97) is temperature-independent. For the other complexes, the temperature-dependent data indicates that the luminescent efficiency is primarily determined by thermal deactivation to a nonradiative state. Activation energies and rate constants for both radiative and nonradiative processes were obtained using a Boltzmann analysis of the temperature-dependent luminescent decay data. Activation energies to the nonradiative state are found to range between 1600 and 4800 cm^−1. The pre-exponential factors for deactivation are large for complexes with C^N ligands (1011−1013 s^−1) and significantly smaller for fac-Ir(pmb)_3 (109 s^−1). The kinetic parameters for decay and results from density functional theory (DFT) calculations of the triplet state are consistent with a nonradiative process involving Ir−N (Ir−C for fac-Ir(pmb)_3) bond rupture leading to a five-coordinate species that has triplet metal-centered (^3MC) character. Linear correlations are observed between the activation energy and the energy difference calculated for the emissive and ^3MC states. The energy level for the ^3MC state is estimated to lie between 21700 and 24000 cm^−1 for the fac-Ir(C^N)_3 complexes and at 28000 cm^−1 for fac-Ir(pmb)_3

    A Paradigm for Blue- or Red-Shifted Absorption of Small Molecules Depending on the Site of π-Extension

    Get PDF
    Benzannulation of aromatic molecules is often used to red-shift absorption and emission bands of organic and inorganic, molecular, and polymeric materials; however, in some cases, either red or blue shifts are observed, depending on the site of benzannulation. A series of five platinum(II) complexes of the form (N∧N∧N)PtCl are reported here that illustrate this phenomenon, where N∧N∧N represents the tridentate monoanionic ligands 2,5-bis(2-pyridylimino)3,4-diethylpyrrolate (1), 1,3-bis(2-pyridylimino)isoindolate (2), 1,3-bis(2-pyridylimino)benz(f)isoindolate (3), 1,3-bis(2-pyridylimino)benz(e)isoindolate (4), and 1,3-bis(1-isoquinolylimino) isoindolate (5). For this series of molecules, either a blue shift (2 and3) or a red shift (4 and 5) in absorption and emission maxima, relative to their respective nonbenzannulated compounds, was observed that depends on the site of benzannulation. Experimental data and first principles calculations suggest that a similar HOMO energy level and a destabilized or stabilized LUMO with benzannulation is responsible for the observed trends. A rationale for LUMO stabilization/destabilization is presented using simple molecular orbital theory. This explanation is expanded to describe other molecules with this unusual behavior

    Vibronic Structure in Room Temperature Photoluminescence of the Halide Perovskite Cs3Bi2Br9

    Get PDF
    We report a study on the optical properties of the layered polymorph of vacancy-ordered triple perovskite Cs3Bi2Br9. The electronic structure, determined from density functional theory calculations, shows the top of the valence band and bottom of the conduction band minima are, unusually, dominated by Bi s and p states, respectively. This produces a sharp exciton peak in the absorption spectra with a binding energy that was approximated to be 940 meV, which is substantially stronger than values found in other halide perovskites and, instead, more closely reflects values seen in alkali halide crystals. This large binding energy is indicative of a strongly localized character and results in a highly structured emission at room temperature as the exciton couples to vibrations in the lattice

    Cyclometalated iridium(III)-sensitized titanium dioxide solar cells

    Get PDF
    Ir(III) dyes used as sensitizers in dye-sensitized solar cells produced quantum yields approaching unity for conversion of absorbed photons to current under simulated air mass 1.0 sunlight, with current production resulting from ligand-to-ligand charge-transfer states, rather than the typical metal-to-ligand charge-transfer states in ruthenium-based cells

    Synthesis and characterization of phosphorescent two coordinate copper(I) complexes bearing diamidocarbene ligands

    Get PDF
    [(DAC)2Cu][BF4] (1) shows a high photoluminescence quantum efficiency (ΦPL) in the solid state and in solution under both N2and O2.</p

    Vibronic Structure in Room Temperature Photoluminescence of the Halide Perovskite Cs3Bi2Br9

    Get PDF
    We report a study on the optical properties of the layered polymorph of vacancy-ordered triple perovskite Cs3Bi2Br9. The electronic structure, determined from density functional theory calculations, shows the top of the valence band and bottom of the conduction band minima are, unusually, dominated by Bi s and p states, respectively. This produces a sharp exciton peak in the absorption spectra with a binding energy that was approximated to be 940 meV, which is substantially stronger than values found in other halide perovskites and, instead, more closely reflects values seen in alkali halide crystals. This large binding energy is indicative of a strongly localized character and results in a highly structured emission at room temperature as the exciton couples to vibrations in the lattice

    Polarizable Anionic Sublattices Can Screen Molecular Dipoles in Noncentrosymmetric Inorganic-Organic Hybrids

    Get PDF
    We report the growth and photophysical characterization of two polar hybrid lead halide phases, methylenedianiline lead iodide and bromide, (MDA)Pb2I6 and (MDA)Pb2Br6, respectively. The phases crystallize in noncentrosymmetric space group Fdd2, which produces a highly oriented molecular dipole moment that gives rise to second harmonic generation (SHG) upon excitation at 1064 nm. While both compositions are isostructural, the size dependence of the SHG signal suggests that the bromide exhibits a stronger phase-matching response whereas the iodide exhibits a significantly weaker non-phase-matching signal. Similarly, fluorescence from (MDA)Pb2Br6 is observed around 630 nm below 75 K whereas only very weak luminescence from (MDA)Pb2I6 can be seen. We attribute the contrasting optical properties to differences in the character of the halide sublattice and postulate that the increased polarizability of the iodide ions acts to screen the local dipole moment, effectively reducing the local electric field in the crystals

    Control of Emission Color with N-Heterocyclic Carbene (NHC) Ligands in Phosphorescent Three-Coordinate Cu(I) Complexes

    Get PDF
    A series of three phosphorescent mononuclear (NHC)–Cu(I) complexes were prepared and characterized. Photophysical properties were found to be largely controlled by the NHC ligand chromophore. Variation of the NHC ligand leads to emission colour tuning over 200 nm range from blue to red, and emission efficiencies of 0.16–0.80 in the solid state
    • …
    corecore