545 research outputs found

    Norwegian National Program for Lifetime Commissioning and Energy Efficient Operation of Buildings

    Get PDF
    The project “Life-Time Commissioning for Energy Efficient Operation of Buildings” is actually a network of industrial companies, private and public entities, and R&D organizations. The overall objective of the project is to contribute to the implementation of life-long commissioning of building HVAC systems, so that this becomes a standardized way of building, operating and maintaining the HVAC systems in Norway. The project is organized as an industry research program with minimum duration of five years. Project members pay an annual membership fee. The main goal for the project is to develop, verify, document and implement suitable tools for functional control of energy and indoor environment in buildings under continuous operation during the entire operational life of the building. This will improve energy efficiency and ensure a rational use of energy and a sound indoor environment. All achievements concerning energy improvement will also contribute to the decrease of CO2 emissions

    Factors influencing apical debris extrusion during endodontic treatment - A review of the literature

    Get PDF
    The primary cause of a periapical inflammatory lesion is intra-radicular microbial infection. Prevention and elimination of apical periodontitis is achieved through successful endodontic treatment. Endodontic treatment is designed to maintain and restore the health of the periapical tissues and prevent periapical disease. It may be defined as the combination of mechanical instrumentation of the root canal system with bactericidal irrigation and obturation with an inert material. Technically, the goal of instrumentation and irrigation is to debride and entirely remove infected tissue debris from the root canal system and create a uniform conical shape that allows medicament delivery and adequate obturation. Microbiologically, the goal of instrumentation and irrigation is to eliminate micro-organisms, reduce their survival in the root canal system and neutralise any antigenic potential of the microbial components remaining in the canal

    Developing a Curriculum for Marine Mechatronics Technicians

    Get PDF
    A growing trend within the U.S. Navy is to streamline operations by deploying ships with less sailors, who are more highly skilled technicians that are trained to do a wide array of jobs. Modern ships also include various automated systems that require more highly skilled technicians for maintenance. Outdated warship designs are now being replaced with industrial grade automation equipment. Such equipment is being used in warships that encounter harsher environments than what exists in the civilian industry. Hence, there is a need for training in regards to industrial grade automation equipment for military and civilian ship repair partners. Marine mechatronics technicians will be trained to maintain these modern complex warship systems. For that purpose, the team of marine mechatronics experts participated in a two day long DACUM workshop at a community college (blind review). The workshop\u27s main purpose was to identify all competencies, skills, tools, and behaviors necessary for the specific job of a marine mechatronics technician

    Health Coaching in Primary Care: A Pilot Study

    Full text link
    Undergraduate Research Opportunity Program (UROP)http://deepblue.lib.umich.edu/bitstream/2027.42/116124/1/Health_Coaching_In_Primary_Care.pd

    Co-overexpression of bcl-2 and c-myc in uterine cervix carcinomas and premalignant lesions

    Get PDF
    To establish the role of co-overexpression of bcl-2 and c-myc protooncogenes in uterine cervix carcinogenesis, we examined 138 tissue samples of low grade cervical squamous intraepithelial lesions (SIL), high grade SIL, portio vaginalis uteri (PVU) carcinoma in situ and PVU invasive carcinoma, stage IA-IIA (study group) and 36 samples without SIL or malignancy (control group). The expression of bcl-2 and c-myc was detected immunohistochemically using a monoclonal antibody. Fisher's exact test (P<0.05) was used to assess statistical significance. Overexpression of bcl-2 was found to increase in direct relation to the grade of the cervical lesions. High sensitivity was of great diagnostic significance for the detection of these types of changes in the uterine cervix. On the basis of high predictive values it can be said that in patients with bcl-2 overexpression there is a great possibility that they have premalignant or malignant changes in the uterine cervix. Co-overexpression of bcl-2 and c-myc oncogenes was found only in patients with PVU invasive carcinoma (6/26-23.0%). Statistically significant difference was not found in the frequency of co-overexpression in patients with PVU invasive carcinoma in relation to the control group (Fisher's test; P=0.064). The method's sensitivity of determining these oncogenes with the aim of detecting PVU invasive carcinoma was 23%, while specificity was 72.2%. On the basis of high predictive values (100%), speaking in statistical terms, it can be concluded that all patients with co-overexpression of bcl-2 and c-myc oncogenes will have PVU invasive carcinoma. We confirmed in our research that co-overexpression of bcl-2 and c-myc oncogenes was increased only in PVU invasive carcinoma. However, a more extensive series of samples and additional tests are required to establish the prognostic significance of bcl-2 and c-myc co-overexpression in cervical carcinogenesis

    Integration of Mechatronics Design Approach into Teaching of Modeling Practices

    Get PDF
    Engineering design has transformed significantly due to advances in embedded system design and computer technologies. Almost every mechanical design today has some electrical and electronic components. Many products manufactured today contain both electrical and mechanical components and systems. Mechatronics is a design process that is multi-disciplinary in nature and integrates principles of many engineering disciplines including, but not limited to, mechanical engineering and mechanical engineering technology, electrical engineering and electrical engineering technology, and controls engineering. Mechatronic systems can be found in many different places today. These range from computer hard drives and robotic assembly systems, to washing machines, coffee makers, printers, and medical devices, as well as to various advanced manufacturing machines and devices that are numerically controlled, such as additive manufacturing machines, rapid prototyping machines and multi-axis CNC machines. The main purpose for integrating a mechatronics themed activity into a computer-modeling course is to engage students in project-based learning through hands-on activities related to modeling a mechatronic device. Students learn the basics of electromechanical systems, the integration of machine elements (gear reducer) and the basics of actuators (electrical motor), all of which are fundamental to understanding mechatronic systems through activities related to the mechatronic design principles. Hence, engineering design for mechanical engineers and mechanical engineering technologists have to involve embedded multi-disciplinary knowledge with the understanding of both mechanical and electrical systems. This paper will focus on presenting the use of modeling as a vehicle to teaching more complex engineering concepts, such as gears, linkage analysis, animation and the solid modelling course content

    Norwegian National Program for Lifetime Commissioning and Energy Efficient Operation of Buildings

    Get PDF
    The project “Life-Time Commissioning for Energy Efficient Operation of Buildings” is actually a network of industrial companies, private and public entities, and R&D organizations. The overall objective of the project is to contribute to the implementation of life-long commissioning of building HVAC systems, so that this becomes a standardized way of building, operating and maintaining the HVAC systems in Norway. The project is organized as an industry research program with minimum duration of five years. Project members pay an annual membership fee. The main goal for the project is to develop, verify, document and implement suitable tools for functional control of energy and indoor environment in buildings under continuous operation during the entire operational life of the building. This will improve energy efficiency and ensure a rational use of energy and a sound indoor environment. All achievements concerning energy improvement will also contribute to the decrease of CO2 emissions

    A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models

    Get PDF
    This paper addresses the problem of Monte Carlo approximation of posterior probability distributions. In particular, we have considered a recently proposed technique known as population Monte Carlo (PMC), which is based on an iterative importance sampling approach. An important drawback of this methodology is the degeneracy of the importance weights when the dimension of either the observations or the variables of interest is high. To alleviate this difficulty, we propose a novel method that performs a nonlinear transformation on the importance weights. This operation reduces the weight variation, hence it avoids their degeneracy and increases the efficiency of the importance sampling scheme, specially when drawing from a proposal functions which are poorly adapted to the true posterior. For the sake of illustration, we have applied the proposed algorithm to the estimation of the parameters of a Gaussian mixture model. This is a very simple problem that enables us to clearly show and discuss the main features of the proposed technique. As a practical application, we have also considered the popular (and challenging) problem of estimating the rate parameters of stochastic kinetic models (SKM). SKMs are highly multivariate systems that model molecular interactions in biological and chemical problems. We introduce a particularization of the proposed algorithm to SKMs and present numerical results.Comment: 35 pages, 8 figure

    Enhanced cosmic-ray flux toward zeta Persei inferred from laboratory study of H3+ - e- recombination rate

    Full text link
    The H3+ molecular ion plays a fundamental role in interstellar chemistry, as it initiates a network of chemical reactions that produce many interstellar molecules. In dense clouds, the H3+ abundance is understood using a simple chemical model, from which observations of H3+ yield valuable estimates of cloud path length, density, and temperature. On the other hand, observations of diffuse clouds have suggested that H3+ is considerably more abundant than expected from the chemical models. However, diffuse cloud models have been hampered by the uncertain values of three key parameters: the rate of H3+ destruction by electrons, the electron fraction, and the cosmic-ray ionisation rate. Here we report a direct experimental measurement of the H3+ destruction rate under nearly interstellar conditions. We also report the observation of H3+ in a diffuse cloud (towards zeta Persei) where the electron fraction is already known. Taken together, these results allow us to derive the value of the third uncertain model parameter: we find that the cosmic-ray ionisation rate in this sightline is forty times faster than previously assumed. If such a high cosmic-ray flux is indeed ubiquitous in diffuse clouds, the discrepancy between chemical models and the previous observations of H3+ can be resolved.Comment: 6 pages, Nature, in pres
    • …
    corecore