3 research outputs found

    Clinical and genetic landscape of treatment naive cervical cancer: Alterations in PIK3CA and in epigenetic modulators associated with sub-optimal outcome

    No full text
    International audienceBACKGROUND: There is a lack of information as to which molecular processes, present at diagnosis, favor tumour escape from standard-of-care treatments in cervical cancer (CC). RAIDs consortium (www.raids-fp7.eu), conducted a prospectively monitored trial, [BioRAIDs (NCT02428842)] with the objectives to generate high quality samples and molecular assessments to stratify patient populations and to identify molecular patterns associated with poor outcome.METHODS: Between 2013 and 2017, RAIDs collected a prospective CC sample and clinical dataset involving 419 participant patients from 18 centers in seven EU countries. Next Generation Sequencing has so far been carried out on a total of 182 samples from 377 evaluable (48%) patients, allowing to define dominant genetic alterations. Reverse phase protein expression arrays (RPPA) was applied to group patients into clusters. Activation of key genetic pathways and protein expression signatures were tested for associations with outcome.FINDINGS: At a median follow up (FU) of 22 months, progression-free survival rates of this FIGO stage IB1-IV population, treated predominantly (87%) by chemoradiation, were65•4% [CI95%: 60•2-71.1]. Dominant oncogenic alterations were seen in PIK3CA (40%), while dominant suppressor gene alterations were seen in KMT2D (15%) and KMT2C (16%). Cumulative frequency of loss-of-function (LOF) mutations in any epigenetic modulator gene alteration was 47% and it was associated with PIK3CA gene alterations in 32%. Patients with tumours harboring alterations in both pathways had a significantly poorer PFS. A new finding was the detection of a high frequency of gains of TLR4 gene amplifications (10%), as well as amplifications, mutations, and non-frame-shift deletions of Androgen receptor (AR) gene in 7% of patients. Finally, RPPA protein expression analysis defined three expression clusters.INTERPRETATION: Our data suggests that patient population may be stratified into four different treatment strategies based on molecular markers at the outset. FUND: European Union's Seventh Program grant agreement No 304810

    Human papilloma virus (HPV) integration signature in Cervical Cancer: identification of MACROD2 gene as HPV hot spot integration site

    No full text
    Background: Cervical cancer (CC) remains a leading cause of gynaecological cancer-related mortality with infection by human papilloma virus (HPV) being the most important risk factor. We analysed the association between different viral integration signatures, clinical parameters and outcome in pre-treated CCs. Methods: Different integration signatures were identified using HPV double capture followed by next-generation sequencing (NGS) in 272 CC patients from the BioRAIDs study [NCT02428842]. Correlations between HPV integration signatures and clinical, biological and molecular features were assessed. Results: Episomal HPV was much less frequent in CC as compared to anal carcinoma (p 300 different HPV-chromosomal junctions (inter- or intra-genic). The most frequent integration site in CC was in MACROD2 gene followed by MIPOL1/TTC6 and TP63. HPV integration signatures were not associated with histological subtype, FIGO staging, treatment or PFS. HPVs were more frequently episomal in PIK3CA mutated tumours (p = 0.023). Viral integration type was dependent on HPV genotype (p < 0.0001); HPV18 and HPV45 being always integrated. High HPV copy number was associated with longer PFS (p = 0.011). Conclusions: This is to our knowledge the first study assessing the prognostic value of HPV integration in a prospectively annotated CC cohort, which detects a hotspot of HPV integration at MACROD2; involved in impaired PARP1 activity and chromosome instability
    corecore