7 research outputs found

    Light Induced Degradation Quantification by Monitoring the VOC Output of Silicon Solar Cell Using Low-Cost Real-Time Virtual Instrumentation

    Get PDF
    Silicon-based solar cells suffer from different types of light-induced efficiency losses (can cause up to 10% loss), known as light-induced degradation (LID). Impurities, such as boron, iron, and oxygen, are common at different concentrations in these solar cells. They form active recombination defects in boron-doped mono-crystalline (Cz-Si) and multi-crystalline (mc-Si) solar cells during illumination. For the solar industry, this will lead to serious financial loss, hence the importance of inspecting and controlling the LID level accurately. Seeking to minimize the human factor and the inaccuracy that comes with it, we have proposed in this research a low-cost virtual instrumentation solution to provide a new real-time instrumentation technique for solar cell characteristics such as open circuit voltage (VOC). The virtual data acquisition system (VDAS) design is based on a low-cost Arduino board associated with MATLAB/Simulink software. Moreover, this system can collect in real time the values of solar cell outputs under prolonged illumination and under different temperatures of the LID test. Further, kinetic modeling of the solar cell output VOC variation as a function of light soak duration; shows the predominance of one type metastable defect over the LID test of c-Si solar cells. Additionally, degradation mechanism in mc-Si solar cells involve more than one metastable defect and are more complexes due to the mc-Si substrate elaboration technique compared to c-Si substrate. Furthermore, the temperature dependence of the concentrations (NVoc) and the thermal activation energies of the defects have been extracted from the experimental VOC measurements obtained using the VDAS. Finally, the system minimizes the test period and errors for solar cell characterization compared to traditional approaches

    Optical Properties Evaluation of CuIn1-xGaxSe2 Thin Films Using OPAL2 Calculator

    Get PDF
    OPAL2 calculator has proved to be an effective technique for simulating optical losses in various materials for various applications. This study demonstrates the use of this software to simulate the transmittance (T) and reflectance (R) and hence evaluate the optical properties of flash evaporated CuIn1-xGaxSe2 (CIGS) thin films with a ratio x = 0.28 deposited on stainless-steel (STS) and glass substrates. The simulation results exhibit excellent accuracy of the modeled design presented in this work. The CIGS with a ratio of gallium x = 0.3 showed the best matching between simulated and experimental T and R patterns. Moreover, the simulation shows that an increase in the gallium concentration increases optical losses. Finally, the results demonstrate the application of the freeware program OPAL2 to practically simulate the optical proprieties of CIGS thin films

    Contribution au développement de cellules solaires au silicium multicristallin par gettering au phosphore et atomisation d’émulsions dopantes

    No full text
    111 p. : ill. ; 30 cmLes travaux de recherche effectués dans le cadre de cette thèse ont pour objectifs : L’amélioration de la qualité électrique des substrats de silicium multicristallin obtenu dans notre Unité par le procédé de tirage à échangeur thermique (HEM), avec le gettering externe au phosphore. L’élaboration d’une nouvelle source dopante au phosphore pour réaliser des émetteurs n+p sur des substrats de silicium multicristallin (Si-mc). Dans la première partie, nous avons procédé à l’étude du gettering externe par diffusion de phosphore appliqué sur des plaquettes de Si-mc HEM/UDTS. Deux sources ont été utilisées pour effectuer le gettering ; une source préforme avec un gettering homogène et une source liquide de POCl3 avec deux schémas : gettering homogène et étendu. L’application du gettering externe par source liquide de POCl3 dans un four de diffusion conventionnel ainsi que par les sources préformes, ont conduit à une nette amélioration de la durée de vie (τeff). Les valeurs initiales mesurées sur des substrats de Si-mc sont de l’ordre de 3 à 8 μsec. Nous avons obtenu une nette augmentation de la durée de vie de 15 à 37μsesc avec les procédés homogène et étendu par source liquide POCL3, et 20 μsec avec gettering par des sources préformes. Dans la deuxième partie, nous avons développé une nouvelle émulsion dopante au phosphore pour la réalisation de l’émetteur de n+p. Plusieurs solvants organiques ont été utilisés avec l’acide H3PO4 pour préparer l'émulsion dopante. Les meilleures couches déposées sur des substrats de Si-mc, par la technique d’atomisation ’’Spray’’, sont obtenues avec la solution H3PO4: sec-butanol. Les émetteurs obtenus sont caractérisés par des profondeurs de jonction de 0.2 à 0.7 μm et une résistivité de 10 à 86 Ω/ . Ces valeurs sont compatibles avec le procédé de fabrication de piles solaires à base de silicium multicrystallin. Les émetteurs réalisés par cette technique, possèdent des caractéristiques similaires à ceux réalisés avec des techniques chères et complexes telles que la diffusion par sources liquide POCL

    Dissociation and Formation Kinetics of Iron-Boron Pairs in Silicon after Phosphorus Implantation Gettering

    No full text
    This paper reports the results of a systematic study on the kinetics of dissociation and formation of iron-boron (FeB) pairs in boron-doped Czochralski silicon after phosphorus implantation gettering of iron at different temperatures. The aim of this study is threefold: (i) investigation of the dissociation kinetics of the FeB pairs by a standardized illumination as a function of the iron concentration after gettering process (ii) study of the kinetics of their association, and (iii) extraction of the characteristic parameters of these two phenomena for gettered samples, in particular the effective time constants of dissociation and association as well as the constant of material, which describes the dissociation rate well in the absence of other recombination channels. This article is protected by copyright. All rights reserved.Peer reviewe

    Finite- vs. infinite-source emitters in silicon photovoltaics: Effect on transition metal gettering

    No full text
    Control of detrimental metal impurities is crucial to silicon solar cell performance. Traditional silicon solar cell emitters are diffused in an infinite-source regime and are known to cause strong point defect segregation towards the emitter and thus enhance bulk minority carrier diffusion length. With the advent of ion-implantation and chemical vapor deposition (CVD) glasses, finite-source diffused emitters are attracting interest. This contribution aims to increase their adoption by elucidating the dominant gettering mechanisms present in finite-source diffused emitters. Our findings indicate that infinite-source diffusion is critical for effective segregation gettering, but that high enough surface phosphorus concentration can activate segregation gettering via finite-source diffusion as well. In the case of ion-implanted emitters, the traditional segregation gettering may be considerably enhanced by impurity precipitation in the implanted layer.United States. Department of Energy. Office of Basic Energy Sciences (Contract No. DE-AC02-06CH11357)National Science Foundation (U.S.) (CA No. EEC-1041895)Finnish Cultural FoundationFulbright-Technology Industries of Finland GrantUniversity of California, San Diego. Start Up Fund

    Abstracts of 1st International Conference on Computational & Applied Physics

    No full text
    This book contains the abstracts of the papers presented at the International Conference on Computational & Applied Physics (ICCAP’2021) Organized by the Surfaces, Interfaces and Thin Films Laboratory (LASICOM), Department of Physics, Faculty of Science, University Saad Dahleb Blida 1, Algeria, held on 26–28 September 2021. The Conference had a variety of Plenary Lectures, Oral sessions, and E-Poster Presentations. Conference Title: 1st International Conference on Computational & Applied PhysicsConference Acronym: ICCAP’2021Conference Date: 26–28 September 2021Conference Location: Online (Virtual Conference)Conference Organizer: Surfaces, Interfaces, and Thin Films Laboratory (LASICOM), Department of Physics, Faculty of Science, University Saad Dahleb Blida 1, Algeria
    corecore