33 research outputs found

    Computing the Girth of a Planar Graph in Linear Time

    Full text link
    The girth of a graph is the minimum weight of all simple cycles of the graph. We study the problem of determining the girth of an n-node unweighted undirected planar graph. The first non-trivial algorithm for the problem, given by Djidjev, runs in O(n^{5/4} log n) time. Chalermsook, Fakcharoenphol, and Nanongkai reduced the running time to O(n log^2 n). Weimann and Yuster further reduced the running time to O(n log n). In this paper, we solve the problem in O(n) time.Comment: 20 pages, 7 figures, accepted to SIAM Journal on Computin

    A Planarity Test via Construction Sequences

    Full text link
    Optimal linear-time algorithms for testing the planarity of a graph are well-known for over 35 years. However, these algorithms are quite involved and recent publications still try to give simpler linear-time tests. We give a simple reduction from planarity testing to the problem of computing a certain construction of a 3-connected graph. The approach is different from previous planarity tests; as key concept, we maintain a planar embedding that is 3-connected at each point in time. The algorithm runs in linear time and computes a planar embedding if the input graph is planar and a Kuratowski-subdivision otherwise

    Planar separators and the Euclidean norm

    Full text link

    A Linear-Time Algorithm for Finding a Maximal Planar Subgraph

    No full text

    Linear Algorithms for Partitioning Embedded Graphs of Bounded Genus

    No full text

    Improved Algorithms for Dynamic Shortest Paths

    No full text
    We describe algorithms for finding shortest paths and distances in outerplanar and planar digraphs that exploit the particular topology of the input graph. An important feature of our algorithms is that they can work in a dynamic environment, where the cost of any edge can be changed or the edge can be deleted. In the case of outerplanar digraphs, our data structures can be updated after any such change in only logarithmic time. A distance query is also answered in logarithmic time. In the case of planar digraphs, we give an interesting tradeoff between preprocessing, query, and update times depending on the value of a certain topological parameter of the graph. Our results can be extended to n-vertex digraphs of genus O(n1−ε) for any ε>0
    corecore