18 research outputs found
Low dimensional Surface Parameterisation with application in biometrics
This paper describes initial results from a novel low dimensional surface parameterisation approach based on a modified iterative closest point (ICP) registration process which uses vertex based principal component analysis (PCA) to incorporate a deformable element into registration process. Using this method a 3D surface is represented by a shape space vector of much smaller dimensionality than the dimensionality of the original data space vector. The proposed method is tested on both simulated 3D faces with different facial expressions and real face data. It is shown that the proposed surface representation can be potentially used as feature space for a facial expression recognition system
3-D facial expression representation using statistical shape models
This poster describes a methodology for facial expressions representation, using 3-D/4-D data, based on the statistical shape modelling technology. The proposed method uses a shape space vector to model surface deformations, and a modified iterative closest point (ICP) method to calculate the point correspondence between each surface. The shape space vector is constructed using principal component analysis (PCA) computed for typical surfaces represented in a training data set. It is shown that the calculated shape space vector can be used as a significant feature for subsequent facial expression classification. Comprehensive 3-D/4-D face data sets have been used for building the deformation models and for testing, which include 3-D synthetic data generated from FaceGen Modeller® software, 3-D facial expression data caputed by a static 3-D scanner in the BU-3DFE database and 3-D video sequences captured at the ADSIP research centre using a 3dMD® dynamic 3-D scanner
3-D facial expression representation using B-spline statistical shape model
Effective representation and recognition of human faces are essential in a number of applications including human-computer interaction (HCI), bio-metrics or video conferencing. This paper presents initial results obtained for a novel method of 3-D facial expressions representation based on the shape space vector of the statistical shape model. The statistical shape model is constructed based on the control points of the B-spline surfaces of the train-ing data set. The model fitting for the data is achieved by a modified iterative closest point (ICP) method with the surface deformations restricted to the es-timated shape space. The proposed method is fully automated and tested on the synthetic 3-D facial data with various facial expressions. Experimental results show that the proposed 3-D facial expression representation can be potentially used for practical applications
Photo-Optical Instrumentation Engineers (SPIE)
Abstract. The H.264/multiview video coding (MVC) standard has been developed to enable efficient coding for three-dimensional and multiple viewpoint video sequences. The inter-view statistical dependencies are utilized and an inter-view prediction is employed to provide more efficient coding; however, this increases the overall encoding complexity. Motion homogeneity is exploited here to selectively enable inter-view prediction, and to reduce complexity in the motion estimation (ME) and the mode selection processes. This has been accomplished by defining situations that relate macro-blocks' motion characteristics to the mode selection and the inter-view prediction processes. When comparing the proposed algorithm to the H.264/MVC reference software and other recent work, the experimental results demonstrate a significant reduction in ME time while maintaining similar rate-distortion performance