27 research outputs found

    Ona tili fanini o‘qitishda STEAM yondashuv

    Get PDF
    Ona tili fanini o‘qitishda o‘quvchilarda STEAM yondashuv asosida tanqidiy fikrlash, axborotni mustaqil izlash va tahlil qilish kompetensiyalarini shaklantirish. 6-sinf “Atoqli otlar” mavzusi yuzasidan bilim va ko‘nikmalar shakllantirishning yangicha yondashuvini tavsiya qilish

    O’zbek tilidagi matnlarning lingvokultirologik xususiyatlari va o’quvchilarda matnni tinglab tushunish ko’nikmasini shakllantirish

    Get PDF
    Presedent birliklar haqida malumot berish. Ushbu maqolada o’quvchilarni tinglab tushunish va mantiqiy fikrlash ko’nikmasni shakllantirish bo’yicha tahlil ishlari amalga oshiriladi

    Matn vositasida bilim va ko’nikmalarni shakllantirish

    Get PDF
    Mazkur maqolada matn orqali oʻquvchilarning bilimlarini hamda koʻnikmalarini rivojlantirish yuzasidan tuzilgan topshiriqlar, matn tahlili boʻyicha nazariy ma’lumot, matn orqali oʻquvchilar dunyoqarashini kengaytirish va Xalqaro IELTS imtihonlari bilan matn koʻnikmalarini qiyosiy tahlil etish toʻgʻrisidagi fikrlar va mulohazalar yoritilgan

    Translation Regulation and Proteasome Mediated Degradation Cooperate to Keep Stem-Loop Binding Protein Low in G1-Phase: REGULATION OF SLBP EXPRESSION IN G1-PHASE

    Get PDF
    Histone mRNA levels are cell cycle regulated, and the major regulatory steps are at the posttranscriptional level. A major regulatory mechanism is S- phase restriction of Stem-loop binding protein (SLBP) which binds to the 3′ end of histone mRNA and participates in multiple steps of histone mRNA metabolism, including 3′ end processing, translation and regulation of mRNA stability. SLBP expression is cell cycle regulated without significant change in its mRNA level. SLBP expression is low in G1 until just before S phase where it functions and at the end of S phase SLBP is degraded by proteasome complex depending on phosphorylations on Thr 60 and Thr61. Here using synchronized HeLa cells we showed that SLBP production rate is low in early G1 and recovers back to S phase level somewhere between early and mid-G1. Further, we showed that SLBP is unstable in G1 due to proteasome mediated degradation as a novel mechanism to keep SLBP low in G1. Finally, the S/G2 stable mutant form of SLBP is degraded by proteasome in G1, indicating that the SLBP degradation mechanism in G1 is independent of the previously identified S/G2 degradation mechanism. In conclusion, as a mechanism to limit histone production to S phase, SLBP is kept low in G1 phase due to cooperative action of translation regulation and proteasome mediated degradation which is independent of previously known S/G2 degradation

    DDB1 and CUL4 associated factor 11 (DCAF11) mediates degradation of Stem-loop binding protein at the end of S phase

    Get PDF
    <p>In eukaryotes, bulk histone expression occurs in the S phase of the cell cycle. This highly conserved system is crucial for genomic stability and proper gene expression. In metazoans, Stem-loop binding protein (SLBP), which binds to 3′ ends of canonical histone mRNAs, is a key factor in histone biosynthesis. SLBP is mainly expressed in S phase and this is a major mechanism to limit bulk histone production to the S phase. At the end of S phase, SLBP is rapidly degraded by proteasome, depending on two phosphorylations on Thr 60 and Thr 61. Previously, we showed that SLBP fragment (aa 51–108) fused to GST, is sufficient to mimic the late S phase (S/G2) degradation of SLBP. Here, using this fusion protein as bait, we performed pull-down experiments and found that DCAF11, which is a substrate receptor of CRL4 complexes, binds to the phosphorylated SLBP fragment. We further confirmed the interaction of full-length SLBP with DCAF11 and Cul4A by co-immunoprecipitation experiments. We also showed that DCAF11 cannot bind to the Thr61/Ala mutant SLBP, which is not degraded at the end of S phase. Using ectopic expression and siRNA experiments, we demonstrated that SLBP expression is inversely correlated with DCAF11 levels, consistent with the model that DCAF11 mediates SLBP degradation. Finally, we found that ectopic expression of the S/G2 stable mutant SLBP (Thr61/Ala) is significantly more toxic to the cells, in comparison to wild type SLBP. Overall, we concluded that CRL4-DCAF11 mediates the degradation of SLBP at the end of S phase and this degradation is essential for the viability of cells.</p

    Video2_Endocytosis at extremes: Formation and internalization of giant clathrin-coated pits under elevated membrane tension.AVI

    No full text
    Internalization of clathrin-coated vesicles from the plasma membrane constitutes the major endocytic route for receptors and their ligands. Dynamic and structural properties of endocytic clathrin coats are regulated by the mechanical properties of the plasma membrane. Here, we used conventional fluorescence imaging and multiple modes of structured illumination microscopy (SIM) to image formation of endocytic clathrin coats within live cells and tissues of developing fruit fly embryos. High resolution in both spatial and temporal domains allowed us to detect and characterize distinct classes of clathrin-coated structures. Aside from the clathrin pits and plaques detected in distinct embryonic tissues, we report, for the first time, formation of giant coated pits (GCPs) that can be up to two orders of magnitude larger than the canonical pits. In cultured cells, we show that GCP formation is induced by increased membrane tension. GCPs take longer to grow but their mechanism of curvature generation is the same as the canonical pits. We also demonstrate that GCPs split into smaller fragments during internalization. Considering the supporting roles played by actin filament dynamics under mechanically stringent conditions that slow down completion of clathrin coats, we suggest that local changes in the coat curvature driven by actin machinery can drive splitting and internalization of GCPs.</p

    Image5_Endocytosis at extremes: Formation and internalization of giant clathrin-coated pits under elevated membrane tension.jpg

    No full text
    Internalization of clathrin-coated vesicles from the plasma membrane constitutes the major endocytic route for receptors and their ligands. Dynamic and structural properties of endocytic clathrin coats are regulated by the mechanical properties of the plasma membrane. Here, we used conventional fluorescence imaging and multiple modes of structured illumination microscopy (SIM) to image formation of endocytic clathrin coats within live cells and tissues of developing fruit fly embryos. High resolution in both spatial and temporal domains allowed us to detect and characterize distinct classes of clathrin-coated structures. Aside from the clathrin pits and plaques detected in distinct embryonic tissues, we report, for the first time, formation of giant coated pits (GCPs) that can be up to two orders of magnitude larger than the canonical pits. In cultured cells, we show that GCP formation is induced by increased membrane tension. GCPs take longer to grow but their mechanism of curvature generation is the same as the canonical pits. We also demonstrate that GCPs split into smaller fragments during internalization. Considering the supporting roles played by actin filament dynamics under mechanically stringent conditions that slow down completion of clathrin coats, we suggest that local changes in the coat curvature driven by actin machinery can drive splitting and internalization of GCPs.</p

    Image6_Endocytosis at extremes: Formation and internalization of giant clathrin-coated pits under elevated membrane tension.jpg

    No full text
    Internalization of clathrin-coated vesicles from the plasma membrane constitutes the major endocytic route for receptors and their ligands. Dynamic and structural properties of endocytic clathrin coats are regulated by the mechanical properties of the plasma membrane. Here, we used conventional fluorescence imaging and multiple modes of structured illumination microscopy (SIM) to image formation of endocytic clathrin coats within live cells and tissues of developing fruit fly embryos. High resolution in both spatial and temporal domains allowed us to detect and characterize distinct classes of clathrin-coated structures. Aside from the clathrin pits and plaques detected in distinct embryonic tissues, we report, for the first time, formation of giant coated pits (GCPs) that can be up to two orders of magnitude larger than the canonical pits. In cultured cells, we show that GCP formation is induced by increased membrane tension. GCPs take longer to grow but their mechanism of curvature generation is the same as the canonical pits. We also demonstrate that GCPs split into smaller fragments during internalization. Considering the supporting roles played by actin filament dynamics under mechanically stringent conditions that slow down completion of clathrin coats, we suggest that local changes in the coat curvature driven by actin machinery can drive splitting and internalization of GCPs.</p

    Video4_Endocytosis at extremes: Formation and internalization of giant clathrin-coated pits under elevated membrane tension.AVI

    No full text
    Internalization of clathrin-coated vesicles from the plasma membrane constitutes the major endocytic route for receptors and their ligands. Dynamic and structural properties of endocytic clathrin coats are regulated by the mechanical properties of the plasma membrane. Here, we used conventional fluorescence imaging and multiple modes of structured illumination microscopy (SIM) to image formation of endocytic clathrin coats within live cells and tissues of developing fruit fly embryos. High resolution in both spatial and temporal domains allowed us to detect and characterize distinct classes of clathrin-coated structures. Aside from the clathrin pits and plaques detected in distinct embryonic tissues, we report, for the first time, formation of giant coated pits (GCPs) that can be up to two orders of magnitude larger than the canonical pits. In cultured cells, we show that GCP formation is induced by increased membrane tension. GCPs take longer to grow but their mechanism of curvature generation is the same as the canonical pits. We also demonstrate that GCPs split into smaller fragments during internalization. Considering the supporting roles played by actin filament dynamics under mechanically stringent conditions that slow down completion of clathrin coats, we suggest that local changes in the coat curvature driven by actin machinery can drive splitting and internalization of GCPs.</p

    Image7_Endocytosis at extremes: Formation and internalization of giant clathrin-coated pits under elevated membrane tension.jpg

    No full text
    Internalization of clathrin-coated vesicles from the plasma membrane constitutes the major endocytic route for receptors and their ligands. Dynamic and structural properties of endocytic clathrin coats are regulated by the mechanical properties of the plasma membrane. Here, we used conventional fluorescence imaging and multiple modes of structured illumination microscopy (SIM) to image formation of endocytic clathrin coats within live cells and tissues of developing fruit fly embryos. High resolution in both spatial and temporal domains allowed us to detect and characterize distinct classes of clathrin-coated structures. Aside from the clathrin pits and plaques detected in distinct embryonic tissues, we report, for the first time, formation of giant coated pits (GCPs) that can be up to two orders of magnitude larger than the canonical pits. In cultured cells, we show that GCP formation is induced by increased membrane tension. GCPs take longer to grow but their mechanism of curvature generation is the same as the canonical pits. We also demonstrate that GCPs split into smaller fragments during internalization. Considering the supporting roles played by actin filament dynamics under mechanically stringent conditions that slow down completion of clathrin coats, we suggest that local changes in the coat curvature driven by actin machinery can drive splitting and internalization of GCPs.</p
    corecore