24 research outputs found

    Non-linear model predictive energy management strategies for stand-alone DC microgrids

    Get PDF
    Due to substantial generation and demand fluctuations in stand-alone green micro-grids, energy management strategies (EMSs) are becoming essential for the power sharing purpose and regulating the microgrids voltage. The classical EMSs track the maximum power points (MPPs) of wind and PV branches independently and rely on batteries, as slack terminals, to absorb any possible excess energy. However, in order to protect batteries from being overcharged by realizing the constant current-constant voltage (IU) charging regime as well as to consider the wind turbine operational constraints, more flexible multivariable and non-linear strategies, equipped with a power curtailment feature, are necessary to control microgrids. This dissertation work comprises developing an EMS that dynamically optimises the operation of stand-alone dc microgrids, consisting of wind, photovoltaic (PV), and battery branches, and coordinately manage all energy flows in order to achieve four control objectives: i) regulating dc bus voltage level of microgrids; ii) proportional power sharing between generators as a local droop control realization; iii) charging batteries as close to IU regime as possible; and iv) tracking MPPs of wind and PV branches during their normal operations. Non-linear model predictive control (NMPC) strategies are inherently multivariable and handle constraints and delays. In this thesis, the above mentioned EMS is developed as a NMPC strategy to extract the optimal control signals, which are duty cycles of three DC-DC converters and pitch angle of a wind turbine. Due to bimodal operation and discontinuous differential states of batteries, microgrids belong to the class of hybrid dynamical systems of non-Filippov type. This dissertation work involves a mathematical approximation of stand-alone dc microgrids as complementarity systems (CSs) of Filippov type. The proposed model is used to develop NMPC strategies and to simulate microgrids using Modelica. As part of the modelling efforts, this dissertation work also proposes a novel algorithm to identify an accurate equivalent electrical circuit of PV modules using both standard test condition (STC) and nominal operating cell temperature (NOCT) information provided by manufacturers. Moreover, two separate stochastic models are presented for hourly wind speed and solar irradiance levels

    Multi-objective design under uncertainties of hybrid renewable energy system using NSGA-II and chance constrained programming

    Get PDF
    The optimum design of Hybrid Renewable Energy Systems (HRES) depends on different economical, environmental and performance related criteria which are often conflicting objectives. The Non-dominated Sorting Genetic Algorithm (NSGA-II) provides a decision support mechanism in solving multi-objective problems and providing a set of non-dominated solutions where finding an absolute optimum solution is not possible. The present study uses NSGA-II algorithm in the design of a standalone HRES comprising wind turbine, PV panel and battery bank with the (economic) objective of minimum system total cost and (performance) objective of maximum reliability. To address the uncertainties in renewable resources (wind speed and solar irradiance), an innovative method is proposed which is based on Chance Constrained Programming (CCP). A case study is used to validate the proposed method, where the results obtained are compared with the conventional method of incorporating uncertainties using Monte Carlo simulation

    A multivariable optimal energy management strategy for standalone DC microgrids

    Get PDF
    Due to substantial generation and demand fluctuations in standalone green microgrids, energy management strategies are becoming essential for the power sharing and voltage regulation purposes. The classical energy management strategies employ the maximum power point tracking (MPPT) algorithms and rely on batteries in case of possible excess or deficit of energy. However, in order to realize constant current-constant voltage (IU) charging regime and increase the life span of batteries, energy management strategies require being more flexible with the power curtailment feature. In this paper, a coordinated and multivariable energy management strategy is proposed that employs a wind turbine and a photovoltaic array of a standalone DC microgrid as controllable generators by adjusting the pitch angle and the switching duty cycles. The proposed strategy is developed as an online nonlinear model predictive control (NMPC) algorithm. Applying to a sample standalone dc microgrid, the developed controller realizes the IU regime for charging the battery bank. The variable load demands are also shared accurately between generators in proportion to their ratings. Moreover, the DC bus voltage is regulated within a predefined range, as a design parameter

    Optimal design of a quadratic parameter varying vehicle suspension system using contrast-based Fruit Fly Optimisation

    Get PDF
    In the UK, in 2014 almost fifty thousand motorists made claims about vehicle damages caused by potholes. Pothole damage mitigation has become so important that a number of car manufacturers have officially designated it as one of their priorities. The objective is to improve suspension shock performance without degrading road holding and ride comfort. In this study, it is shown that significant improvement in performance is achieved if a clipped quadratic parameter varying suspension is employed. Optimal design of the proposed system is challenging because of the multiple local minima causing global optimisation algorithms to get trapped at local minima, located far from the optimum solution. To this end an enhanced Fruit Fly Optimisation Algorithm − based on a recent study on how well a fruit fly’s tiny brain finds food − was developed. The new algorithm is first evaluated using standard and nonstandard benchmark tests and then applied to the computationally expensive suspension design problem. The proposed algorithm is simple to use, robust and well suited for the solution of highly nonlinear problems. For the suspension design problem new insight is gained, leading to optimum damping profiles as a function of excitation level and rattle space velocity

    Electrified Powertrain with Multiple Planetary Gears and Corresponding Energy Management Strategy

    Get PDF
    Modern hybrid electric vehicles (HEVs) like the fourth generation of Toyota Prius incorporate multiple planetary gears (PG) to interconnect various power components. Previous studies reported that increasing the number of planetary gears from one to two reduces energy consumption. However, these studies did not compare one PG and two PGs topologies at their optimal operation. Moreover, the size of the powertrain components are not the same and hence the source of reduction in energy consumption is not clear. This paper investigates the effect of the number of planetary gears on energy consumption under optimal operation of the powertrain components. The powertrains with one and two PGs are considered and an optimal simultaneous torque distribution and mode selection strategy is proposed. The proposed energy management strategy (EMS) optimally distributes torque demands amongst the power components whilst also controlling clutches (i.e., mode selection). Results show that increasing from one to two PGs reduces energy consumption by 4%

    Analysis and Accuracy Improvement of UWB-TDoA-Based Indoor Positioning System

    Get PDF
    Positioning systems are used in a wide range of applications which require determining the position of an object in space, such as locating and tracking assets, people and goods; assisting navigation systems; and mapping. Indoor Positioning Systems (IPSs) are used where satellite and other outdoor positioning technologies lack precision or fail. Ultra-WideBand (UWB) technology is especially suitable for an IPS, as it operates under high data transfer rates over short distances and at low power densities, although signals tend to be disrupted by various objects. This paper presents a comprehensive study of the precision, failure, and accuracy of 2D IPSs based on UWB technology and a pseudo-range multilateration algorithm using Time Difference of Arrival (TDoA) signals. As a case study, the positioning of a 4×4m2 area, four anchors (transceivers), and one tag (receiver) are considered using bitcraze’s Loco Positioning System. A Cramér–Rao Lower Bound analysis identifies the convex hull of the anchors as the region with highest precision, taking into account the anisotropic radiation pattern of the anchors’ antennas as opposed to ideal signal distributions, while bifurcation envelopes containing the anchors are defined to bound the regions in which the IPS is predicted to fail. This allows the formulation of a so-called flyable area, defined as the intersection between the convex hull and the region outside the bifurcation envelopes. Finally, the static bias is measured after applying a built-in Extended Kalman Filter (EKF) and mapped using a Radial Basis Function Network (RBFN). A debiasing filter is then developed to improve the accuracy. Findings and developments are experimentally validated, with the IPS observed to fail near the anchors, precision around ±3cm, and accuracy improved by about 15cm for static and 5cm for dynamic measurements, on average

    A fast and parametric torque distribution strategy for four-wheel-drive energy-efficient electric vehicles

    Get PDF
    Electric vehicles (EVs) with four individually controlled drivetrains are over-actuated systems, and therefore, the total wheel torque and yaw moment demands can be realized through an infinite number of feasible wheel torque combinations. Hence, an energy-efficient torque distribution among the four drivetrains is crucial for reducing the drivetrain power losses and extending driving range. In this paper, the optimal torque distribution is formulated as the solution of a parametric optimization problem, depending on the vehicle speed. An analytical solution is provided for the case of equal drivetrains, under the experimentally confirmed hypothesis that the drivetrain power losses are strictly monotonically increasing with the torque demand. The easily implementable and computationally fast wheel torque distribution algorithm is validated by simulations and experiments on an EV demonstrator, along driving cycles and cornering maneuvers. The results show considerable energy savings compared to alternative torque distribution strategies
    corecore