4 research outputs found

    Assessing copy number aberrations and copy neutral loss of heterozygosity across the genome as best practice: An evidence based review of clinical utility from the cancer genomics consortium (CGC) working group for myelodysplastic syndrome, myelodysplastic/myeloproliferative and myeloproliferative neoplasms

    Get PDF
    Multiple studies have demonstrated the utility of chromosomal microarray (CMA) testing to identify clinically significant copy number alterations (CNAs) and copy-neutral loss-of-heterozygosity (CN-LOH) in myeloid malignancies. However, guidelines for integrating CMA as a standard practice for diagnostic evaluation, assessment of prognosis and predicting treatment response are still lacking. CMA has not been recommended for clinical work-up of myeloid malignancies by the WHO 2016 or the NCCN 2017 guidelines but is a suggested test by the European LeukaemiaNet 2013 for the diagnosis of primary myelodysplastic syndrome (MDS). The Cancer Genomics Consortium (CGC) Working Group for Myeloid Neoplasms systematically reviewed peer-reviewed literature to determine the power of CMA in (1) improving diagnostic yield, (2) refining risk stratification, and (3) providing additional genomic information to guide therapy. In this manuscript, we summarize the evidence base for the clinical utility of array testing in the workup of MDS, myelodysplastic/myeloproliferative neoplasms (MDS/MPN) and myeloproliferative neoplasms (MPN). This review provides a list of recurrent CNAs and CN-LOH noted in this disease spectrum and describes the clinical significance of the aberrations and how they complement gene mutation findings by sequencing. Furthermore, for new or suspected diagnosis of MDS or MPN, we present suggestions for integrating genomic testing methods (CMA and mutation testing by next generation sequencing) into the current standard-of-care clinical laboratory testing (karyotype, FISH, morphology, and flow)

    Assessing copy number abnormalities and copy-neutral loss-of-heterozygosity across the genome as best practice in diagnostic evaluation of acute myeloid leukemia: An evidence-based review from the cancer genomics consortium (CGC) myeloid neoplasms working group

    Get PDF
    Structural genomic abnormalities, including balanced chromosomal rearrangements, copy number gains and losses and copy-neutral loss-of-heterozygosity (CN-LOH) represent an important category of diagnostic, prognostic and therapeutic markers in acute myeloid leukemia (AML). Genome-wide evaluation for copy number abnormalities (CNAs) is at present performed by karyotype analysis which has low resolution and is unobtainable in a subset of cases. Furthermore, examination for possible CN-LOH in leukemia cells is at present not routinely performed in the clinical setting. Chromosomal microarray (CMA) analysis is a widely available assay for CNAs and CN-LOH in diagnostic laboratories, but there are currently no guidelines how to best incorporate this technology into clinical testing algorithms for neoplastic diseases including AML. The Cancer Genomics Consortium Working Group for Myeloid Neoplasms performed an extensive review of peer-reviewed publications focused on CMA analysis in AML. Here we summarize evidence regarding clinical utility of CMA analysis in AML extracted from published data, and provide recommendations for optimal utilization of CMA testing in the diagnostic workup. In addition, we provide a list of CNAs and CN-LOH regions which have documented clinical significance in diagnosis, prognosis and treatment decisions in AML

    Distinctive Patterns of MicroRNA Expression Associated with Karyotype in Acute Myeloid Leukaemia

    Get PDF
    Acute myeloid leukaemia (AML) is the most common acute leukaemia in adults; however, the genetic aetiology of the disease is not yet fully understood. A quantitative expression profile analysis of 157 mature miRNAs was performed on 100 AML patients representing the spectrum of known karyotypes common in AML. The principle observation reported here is that AMLs bearing a t(15;17) translocation had a distinctive signature throughout the whole set of genes, including the up regulation of a subset of miRNAs located in the human 14q32 imprinted domain. The set included miR-127, miR-154, miR-154*, miR-299, miR-323, miR-368, and miR-370. Furthermore, specific subsets of miRNAs were identified that provided molecular signatures characteristic of the major translocation-mediated gene fusion events in AML. Analysis of variance showed the significant deregulation of 33 miRNAs across the leukaemic set with respect to bone marrow from healthy donors. Fluorescent in situ hybridisation analysis using miRNA-specific locked nucleic acid (LNA) probes on cryopreserved patient cells confirmed the results obtained by real-time PCR. This study, conducted on about a fifth of the miRNAs currently reported in the Sanger database (microrna.sanger.ac.uk), demonstrates the potential for using miRNA expression to sub-classify cancer and suggests a role in the aetiology of leukaemia

    A microRNA study of the genetic origins of acute myeloid leukaemia

    No full text
    PhDMicroRNAs (miRNAs), a group of highly-conserved, small (19-26 nucleotides), non-coding RNAs, are one of the largest gene families of the genome. They are believed to control several pathways including haematopoiesis and are implicated in a number of cancers. The genetic basis of acute myeloid leukaemia (AML) has been extensively studied, however its aetiology is not fully understood. Analysis of new markers, such as miRNAs, may suggest areas for further exploration. Expression levels of 157 miRNAs in 100 AML samples representing the known spectrum of karyotypes, 2 leukaemic cell lines and bone marrow from 2 healthy donors were measured by real time-PCR, designed to amplify only from the mature miRNA. Unsupervised hierarchical clustering revealed molecular signatures associated with the major translocation-mediated gene-fusion events implicated in AML. In particular, the acute promyelocytic leukaemia (APML) samples harbouring a t(15;17) showed a distinct pattern characterised by high expression of a subset of genes located within an imprinted region on chromosome 14. Two of the miRNAs located within this region were examined in situ. A novel method for the detection of miRNAs in haematopoietic cells was devised using locked nucleic acid (LNA)-modified probes and confocal microscopy demonstrated their spatial localisation. The method was modified further to incorporate probes for the detection of the abnormal blast population and was applied to paired, diagnostic and remission, samples. Functional analyses were performed on cell lines and patient samples using a precursor molecule and a knockdown molecule for miR-127. Cell cycle and gene expression analysis was undertaken. This miRNA was not directly involved in the cell cycle or apoptotic pathways, however gene expression analyses identified a number of potential gene targets. These findings provide new insights into the role of miRNAs in the genetic origins of AML and highlight their potential as biomarkers for disease stratification and drug-targeted therapy
    corecore