10,675 research outputs found

    Spatial resolution of a GEM readout TPC using the charge dispersion signal

    Get PDF
    A large volume Time Projection Chamber (TPC) is being considered for the central charged particle tracker for the detector for the proposed International Linear Collider (ILC). To meet the ILC-TPC spatial resolution challenge of ~100 microns with a manageable number of readout pads and channels of electronics, Micro Pattern Gas Detectors (MPGD) are being developed which could use pads comparable in width to the proportional-wire/cathode-pad TPC. We have built a prototype GEM readout TPC with 2 mm x 6 mm pads using the new concept of charge dispersion in MPGDs with a resistive anode. The dependence of transverse resolution on the drift distance has been measured for small angle tracks in cosmic ray tests without a magnetic field for Ar/CO2 (90:10). The GEM-TPC resolution with charge dispersion readout is significantly better than previous measurements carried out with conventional direct charge readout techniques.Comment: 5 figures, 10 page

    Micromegas TPC studies at high magnetic fields using the charge dispersion signal

    Get PDF
    The International Linear Collider (ILC) Time Projection Chamber (TPC) transverse space-point resolution goal is 100 microns for all tracks including stiff 90 degree tracks with the full 2 meter drift. A Micro Pattern Gas Detector (MPGD) readout TPC can achieve the target resolution with existing techniques using 1 mm or narrower pads at the expense of increased detector cost and complexity. The new MPGD readout technique of charge dispersion can achieve good resolution without resorting to narrow pads. This has been demonstrated previously for 2 mm x 6 mm pads with GEMs and Micromegas in cosmic ray tests and in a KEK beam test in a 1 Tesla magnet. We have recently tested a Micromegas-TPC using the charge dispersion readout concept in a high field super-conducting magnet at DESY. The measured Micromegas gain was found to be constant within 0.5% for magnetic fields up to 5 Tesla. With the strong suppression of transverse diffusion at high magnetic fields, we measure a flat 50 micron resolution at 5 Tesla over the full 15 cm drift length of our prototype TPC.Comment: 7 pages, 3 figure

    Psychological Morbidity in Students of Medical College and Science and Art College Students - A Comparative Study

    Get PDF
    Considering the importance of quality of life in medical students we have conducted a cross sectional & descriptive study on screening of mental illness of 60 medical students of prefinal year and comparing it with 60 students of third year of Science and Art College. Students were selected via random sampling. GHQ-12 was used as a screening tool and after obtaining scores students were graded in 3 categories - individuals screened positive for psychological morbidity were of Grades 2 and 3 and individuals screened negative for psychological morbidity were of Grade 1 and they were compared according to college, gender & residence. Students screened positive for psychological morbidity as per GHQ-12 were found higher in medical college (87%) as compared to Science and Art College (45%) and a statistically significant association was found between psychological morbidity and medical students. Psychological morbidity was not significantly associated with residence and gender

    Position Sensing from Charge Dispersion in Micro-Pattern Gas Detectors with a Resistive Anode

    Full text link
    Micro-pattern gas detectors, such as the Gas Electron Multiplier (GEM) and the Micromegas need narrow high density anode readout elements to achieve good spatial resolution. A high-density anode readout would require an unmanageable number of electronics channels for certain potential micro-detector applications such as the Time Projection Chamber. We describe below a new technique to achieve good spatial resolution without increasing the electronics channel count in a modified micro-detector outfitted with a high surface resistivity anode readout structure. The concept and preliminary measurements of spatial resolution from charge dispersion in a modified GEM detector with a resistive anode are described below.Comment: 14 pages, 8 figures, submitted to Nucl. Inst. Meth; typo in eqn 4 corrected, fig 2 updated accordingl

    Wide-Band Scanned Array of Microstrip Antenna on Ferrite Substrate

    Get PDF

    PdTe a 4.5K Type II BCS Superconductor

    Full text link
    We report on the structure and physical properties of bulk Palladium Tellurium superconductor, which is synthesized via quartz vacuum encapsulation technique at 750 C. The as synthesized compound is crystallized in hexagonal crystal structure. Magnetization and Magneto-transport measurements provided the values of lower and upper critical field to be 250 and 1200 Gauss respectively at 2 Kelvin. The Coherence length and GL parameter are estimated from the experimentally determined upper and lower critical fields, which are 45 nm and 1.48 respectively. The jump in Cp(T) at Tc is found to be 1.33 and the Debye temperature and electronic specific heat constant are 203 Kelvin and 6.01mJ/mole-K2 respectively.Comment: 13 pages Text + Figs: Accepted in Sup. Sci. and Tec

    Ion-water clusters, bulk medium effects, and ion hydration

    Full text link
    Thermochemistry of gas-phase ion-water clusters together with estimates of the hydration free energy of the clusters and the water ligands are used to calculate the hydration free energy of the ion. Often the hydration calculations use a continuum model of the solvent. The primitive quasichemical approximation to the quasichemical theory provides a transparent framework to anchor such efforts. Here we evaluate the approximations inherent in the primitive quasichemical approach and elucidate the different roles of the bulk medium. We find that the bulk medium can stabilize configurations of the cluster that are usually not observed in the gas phase, while also simultaneously lowering the excess chemical potential of the ion. This effect is more pronounced for soft ions. Since the coordination number that minimizes the excess chemical potential of the ion is identified as the optimal or most probable coordination number, for such soft ions, the optimum cluster size and the hydration thermodynamics obtained without account of the bulk medium on the ion-water clustering reaction can be different from those observed in simulations of the aqueous ion. The ideas presented in this work are expected to be relevant to experimental studies that translate thermochemistry of ion-water clusters to the thermodynamics of the hydrated ion and to evolving theoretical approaches that combine high-level calculations on clusters with coarse-grained models of the medium
    corecore