98 research outputs found

    Computational Modeling of Allosteric Communication Reveals Organizing Principles of Mutation-Induced Signaling in ABL and EGFR Kinases

    Get PDF
    The emerging structural information about allosteric kinase complexes and the growing number of allosteric inhibitors call for a systematic strategy to delineate and classify mechanisms of allosteric regulation and long-range communication that control kinase activity. In this work, we have investigated mechanistic aspects of long-range communications in ABL and EGFR kinases based on the results of multiscale simulations of regulatory complexes and computational modeling of signal propagation in proteins. These approaches have been systematically employed to elucidate organizing molecular principles of allosteric signaling in the ABL and EGFR multi-domain regulatory complexes and analyze allosteric signatures of the gate-keeper cancer mutations. We have presented evidence that mechanisms of allosteric activation may have universally evolved in the ABL and EGFR regulatory complexes as a product of a functional cross-talk between the organizing Ξ±F-helix and conformationally adaptive Ξ±I-helix and Ξ±C-helix. These structural elements form a dynamic network of efficiently communicated clusters that may control the long-range interdomain coupling and allosteric activation. The results of this study have unveiled a unifying effect of the gate-keeper cancer mutations as catalysts of kinase activation, leading to the enhanced long-range communication among allosterically coupled segments and stabilization of the active kinase form. The results of this study can reconcile recent experimental studies of allosteric inhibition and long-range cooperativity between binding sites in protein kinases. The presented study offers a novel molecular insight into mechanistic aspects of allosteric kinase signaling and provides a quantitative picture of activation mechanisms in protein kinases at the atomic level.This work was partly supported by funding from The University of Kansas

    Structure-Functional Prediction and Analysis of Cancer Mutation Effects in Protein Kinases

    Get PDF
    A central goal of cancer research is to discover and characterize the functional effects of mutated genes that contribute to tumorigenesis. In this study, we provide a detailed structural classification and analysis of functional dynamics for members of protein kinase families that are known to harbor cancer mutations. We also present a systematic computational analysis that combines sequence and structure-based prediction models to characterize the effect of cancer mutations in protein kinases. We focus on the differential effects of activating point mutations that increase protein kinase activity and kinase-inactivating mutations that decrease activity. Mapping of cancer mutations onto the conformational mobility profiles of known crystal structures demonstrated that activating mutations could reduce a steric barrier for the movement from the basal low activity state to the active state. According to our analysis, the mechanism of activating mutations reflects a combined effect of partial destabilization of the kinase in its inactive state and a concomitant stabilization of its active-like form, which is likely to drive tumorigenesis at some level. Ultimately, the analysis of the evolutionary and structural features of the major cancer-causing mutational hotspot in kinases can also aid in the correlation of kinase mutation effects with clinical outcomes

    Rice Breeding for High Grain Yield under Drought: A Strategic Solution to a Complex Problem

    Get PDF
    Drought is one of the major abiotic stresses that affect rice production in rainfed areas. Recent trends in climate change have predicted a further increase in drought intensity, making the development of new drought-tolerant rice cultivars critical to sustain rice production in this ecosystem. The use of grain yield as a selection criterion at the International Rice Research Institute (IRRI), through proper population development and precise phenotyping techniques, has allowed the development of several high-yielding rice cultivars that have been released in major rainfed rice-growing areas. This strategy has also allowed the identification of several major quantitative trait loci (QTLs) that show large effects under drought across environments and genetic backgrounds. These QTLs are being pyramided together to develop drought-tolerant versions of popular drought-susceptible varieties. The near-isogenic lines (NILs) developed can replace the popular, high-yielding but drought-susceptible varieties in rainfed areas prone to drought. Additionally, these NILs serve as suitable genetic material for the study of molecular and physiological mechanisms underlying these QTLs. This may provide a better understanding of plant functions responsible for high grain yield under drought and lead to the identification of new traits and genes

    Glycosylation Effects on FSH-FSHR Interaction Dynamics: A Case Study of Different FSH Glycoforms by Molecular Dynamics Simulations

    Get PDF
    This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedicationThe gonadotropin known as follicle-stimulating hormone (FSH) plays a key role in regulating reproductive processes. Physiologically active FSH is a glycoprotein that can accommodate glycans on up to four asparagine residues, including two sites in the FSH alpha subunit that are critical for biochemical function, plus two sites in the beta subunit, whose differential glycosylation states appear to correspond to physiologically distinct functions. Some degree of FSH beta hypo-glycosylation seems to confer advantages toward reproductive fertility of childbearing females. In order to identify possible mechanistic underpinnings for this physiological difference we have pursued computationally intensive molecular dynamics simulations on complexes between the high affinity site of the gonadal FSH receptor (FSHR) and several FSH glycoforms including fully-glycosylated (FSH24), hypo-glycosylated (e.g., FSH15), and completely deglycosylated FSH (dgFSH). These simulations suggest that deviations in FSH/FSHR binding profile as a function of glycosylation state are modest when FSH is adorned with only small glycans, such as single N-acetylglucosamine residues. However, substantial qualitative differences emerge between FSH15 and FSH24 when FSH is decorated with a much larger, tetra-antennary glycan. Specifically, the FSHR complex with hypo-glycosylated FSH15 is observed to undergo a significant conformational shift after 5-10 ns of simulation, indicating that FSH15 has greater conformational flexibility than FSH24 which may explain the more favorable FSH15 kinetic profile. FSH15 also exhibits a stronger binding free energy, due in large part to formation of closer and more persistent salt-bridges with FSHR.This research was supported by National Institute of Health Grant P01 AG-029531 to GRB. LiS Consulting provided support in the form of a salary for GHL, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific role of this author is articulated in the 'author contributions' section

    Structural basis for the high-affinity inhibition of mammalian membranous adenylyl cyclase by 2\u27,3\u27-o-(N-methylanthraniloyl)-inosine 5\u27-triphosphate

    Get PDF
    2\u27,3\u27-O-(N-Methylanthraniloyl)-ITP (MANT-ITP) is the most potent inhibitor of mammalian membranous adenylyl cyclase (mAC) 5 (AC5, K(i), 1 nM) yet discovered and surpasses the potency of MANT-GTP by 55-fold (J Pharmacol Exp Ther 329:1156-1165, 2009). AC5 inhibitors may be valuable drugs for treatment of heart failure. The aim of this study was to elucidate the structural basis for the high-affinity inhibition of mAC by MANT-ITP. MANT-ITP was a considerably more potent inhibitor of the purified catalytic domains VC1 and IIC2 of mAC than MANT-GTP (K(i), 0.7 versus 18 nM). Moreover, there was considerably more efficient fluorescence resonance energy transfer between Trp1020 of IIC2 and the MANT group of MANT-ITP compared with MANT-GTP, indicating optimal interaction of the MANT group of MANT-ITP with the hydrophobic pocket. The crystal structure of MANT-ITP in complex with the G(s)Ξ±- and forskolin-activated catalytic domains VC1:IIC2 compared with the existing MANT-GTP crystal structure revealed only subtle differences in binding mode. The higher affinity of MANT-ITP to mAC compared with MANT-GTP is probably due to fewer stereochemical constraints upon the nucleotide base in the purine binding pocket, allowing a stronger interaction with the hydrophobic regions of IIC2 domain, as assessed by fluorescence spectroscopy. Stronger interaction is also achieved in the phosphate-binding site. The triphosphate group of MANT-ITP exhibits better metal coordination than the triphosphate group of MANT-GTP, as confirmed by molecular dynamics simulations. Collectively, the subtle differences in ligand structure have profound effects on affinity for mAC

    Exquisite Selectivity For Human Toll-like Receptor 8 in Substituted Furo[2,3-c]quinolines

    Get PDF
    Toll-like receptor (TLR)-8 agonists activate adaptive immune responses by inducing robust production of T helper 1-polarizing cytokines, suggesting that TLR8-active compounds may be promising candidate adjuvants. We synthesized and evaluated hitherto unexplored furo[2,3-c]quinolines and its regioisomeric furo[3,2-c]quinolines, derived via a tandem, one-pot Sonogashira coupling and intramolecular 5 endo-dig cyclization strategy, in a panel of primary screens. We observed a pure TLR8 agonistic activity profile in select furo[2,3-c]quinolines, with maximal potency conferred by a C2-butyl group (EC50: 1.6 Β΅M); shorter, longer, or substituted homologues, as well as compounds bearing C1 substitutions were inactive, which was rationalized by docking studies using the recently-described crystal structure of human TLR8. The best-in-class compound displayed prominent proinflammatory cytokine induction (including interleukin-12 and interleukin-18), but was bereft of interferon-Ξ± inducing properties, confirming its high selectivity for human TLR8

    Elucidation of the Hsp90 C-terminal Inhibitor Binding Site

    Get PDF
    The Hsp90 chaperone machine is required for the folding, activation and/or stabilization of more than 50 proteins directly related to malignant progression. Hsp90 contains small molecule binding sites at both its N- and C-terminal domains, however, limited structural and biochemical data regarding the C-terminal binding site is available. In this report, the small molecule binding site in the Hsp90 C-terminal domain was revealed by protease fingerprinting and photoaffinity labeling utilizing LC-MS/MS. The identified site was characterized by generation of a homology model for hHsp90Ξ± using the SAXS open structure of HtpG and docking the bioactive conformation of NB into the generated model. The resulting model for the bioactive conformation of NB bound to Hsp90Ξ± is presented herein

    A Systematic Protocol for the Characterization of Hsp90 Modulators

    Get PDF
    This is the author's accepted manuscript. Made available by the permission of the publisher.Several Hsp90 modulators have been identified including the N-terminal ligand geldanamycin (GDA), the C-terminal ligand novobiocin (NB), and the co-chaperone disruptor celastrol. Other Hsp90 modulators elicit a mechanism of action that remains unknown. For example, the natural product gedunin and the synthetic anti-spermatogenic agent H2-gamendazole, recently identified Hsp90 modulators, manifest biological activity through undefined mechanisms. Herein, we report a series of biochemical techniques used to classify such modulators into identifiable categories. Such studies provided evidence that gedunin and H2-gamendazole both modulate Hsp90 via a mechanism similar to celastrol, and unlike NB or GDA

    The Energy Landscape Analysis of Cancer Mutations in Protein Kinases

    Get PDF
    The growing interest in quantifying the molecular basis of protein kinase activation and allosteric regulation by cancer mutations has fueled computational studies of allosteric signaling in protein kinases. In the present study, we combined computer simulations and the energy landscape analysis of protein kinases to characterize the interplay between oncogenic mutations and locally frustrated sites as important catalysts of allostetric kinase activation. While structurally rigid kinase core constitutes a minimally frustrated hub of the catalytic domain, locally frustrated residue clusters, whose interaction networks are not energetically optimized, are prone to dynamic modulation and could enable allosteric conformational transitions. The results of this study have shown that the energy landscape effect of oncogenic mutations may be allosteric eliciting global changes in the spatial distribution of highly frustrated residues. We have found that mutation-induced allosteric signaling may involve a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. The presented study has demonstrated that activation cancer mutations may affect the thermodynamic equilibrium between kinase states by allosterically altering the distribution of locally frustrated sites and increasing the local frustration in the inactive form, while eliminating locally frustrated sites and restoring structural rigidity of the active form. The energy landsape analysis of protein kinases and the proposed role of locally frustrated sites in activation mechanisms may have useful implications for bioinformatics-based screening and detection of functional sites critical for allosteric regulation in complex biomolecular systems
    • …
    corecore