99 research outputs found

    The Politics of Income Distribution in Colombia

    Get PDF
    Paper by Robert H. Di

    Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation

    Get PDF
    The energy-conversion efficiency is a key metric that facilitates comparison of the performance of various approaches to solar energy conversion. However, a suite of disparate methodologies has been proposed and used historically to evaluate the efficiency of systems that produce fuels, either directly or indirectly, with sunlight and/or electrical power as the system inputs. A general expression for the system efficiency is given as the ratio of the total output power (electrical plus chemical) divided by the total input power (electrical plus solar). The solar-to-hydrogen (STH) efficiency follows from this globally applicable system efficiency but only is applicable in the special case for systems in which the only input power is sunlight and the only output power is in the form of hydrogen fuel derived from solar-driven water splitting. Herein, system-level efficiencies, beyond the STH efficiency, as well as component-level figures of merit are defined and discussed to describe the relative energy-conversion performance of key photoactive components of complete systems. These figures of merit facilitate the comparison of electrode materials and interfaces without conflating their fundamental properties with the engineering of the cell setup. The resulting information about the components can then be used in conjunction with a graphical circuit analysis formalism to obtain “optimal” system efficiencies that can be compared between various approaches. The approach provides a consistent method for comparison of the performance at the system and component levels of various technologies that produce fuels and/or electricity from sunlight

    Can Historical Institutionalism be Applied to Political Regime Development in Africa?

    Full text link
    Historical institutionalism has been used to explain the emergence of democracy and dictatorship in various regions of the world, but not applied to political development in Africa. Based on the recently refined concepts of historical institutionalism, the aim of this study is to provide a framework for the analysis of the various regime types that have been established in Africa during the last two decades: democratic, hybrid and authoritarian. Surprisingly little effort has been dedicated to a historically grounded explanation of these regime types. Against a common claim that African politics is mainly driven by informal institutions or behaviours, we argue that an institution-based examination of African politics is justified. We then provide a proposition of how to link up concepts of historical institutionalism with empirical cases in Africa, within a comparative approach. Our proposition for tracing specific development paths will not be based on the regimes as a 'whole', but on the deconstruction of a political regime into partial regimes and subsequently into selected formal and informal institutions. This will allow for an empirical analysis of the different components of a regime over long periods of time, and thus for path-dependent analyses of regime development

    Evaluation of 309 Environmental Chemicals Using a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity Assay

    Get PDF
    The vast landscape of environmental chemicals has motivated the need for alternative methods to traditional whole-animal bioassays in toxicity testing. Embryonic stem (ES) cells provide an in vitro model of embryonic development and an alternative method for assessing developmental toxicity. Here, we evaluated 309 environmental chemicals, mostly food-use pesticides, from the ToxCast™ chemical library using a mouse ES cell platform. ES cells were cultured in the absence of pluripotency factors to promote spontaneous differentiation and in the presence of DMSO-solubilized chemicals at different concentrations to test the effects of exposure on differentiation and cytotoxicity. Cardiomyocyte differentiation (α,β myosin heavy chain; MYH6/MYH7) and cytotoxicity (DRAQ5™/Sapphire700™) were measured by In-Cell Western™ analysis. Half-maximal activity concentration (AC50) values for differentiation and cytotoxicity endpoints were determined, with 18% of the chemical library showing significant activity on either endpoint. Mining these effects against the ToxCast Phase I assays (∼500) revealed significant associations for a subset of chemicals (26) that perturbed transcription-based activities and impaired ES cell differentiation. Increased transcriptional activity of several critical developmental genes including BMPR2, PAX6 and OCT1 were strongly associated with decreased ES cell differentiation. Multiple genes involved in reactive oxygen species signaling pathways (NRF2, ABCG2, GSTA2, HIF1A) were strongly associated with decreased ES cell differentiation as well. A multivariate model built from these data revealed alterations in ABCG2 transporter was a strong predictor of impaired ES cell differentiation. Taken together, these results provide an initial characterization of metabolic and regulatory pathways by which some environmental chemicals may act to disrupt ES cell growth and differentiation

    Brain reserve contributes to distinguishing preclinical Alzheimer's stages 1 and 2

    Get PDF
    BackgroundIn preclinical Alzheimer's disease, it is unclear why some individuals with amyloid pathologic change are asymptomatic (stage 1), whereas others experience subjective cognitive decline (SCD, stage 2). Here, we examined the association of stage 1 vs. stage 2 with structural brain reserve in memory-related brain regions.MethodsWe tested whether the volumes of hippocampal subfields and parahippocampal regions were larger in individuals at stage 1 compared to asymptomatic amyloid-negative older adults (healthy controls, HCs). We also tested whether individuals with stage 2 would show the opposite pattern, namely smaller brain volumes than in amyloid-negative individuals with SCD. Participants with cerebrospinal fluid (CSF) biomarker data and bilateral volumetric MRI data from the observational, multi-centric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) study were included. The sample comprised 95 amyloid-negative and 26 amyloid-positive asymptomatic participants as well as 104 amyloid-negative and 47 amyloid-positive individuals with SCD. Volumes were based on high-resolution T2-weighted images and automatic segmentation with manual correction according to a recently established high-resolution segmentation protocol.ResultsIn asymptomatic individuals, brain volumes of hippocampal subfields and of the parahippocampal cortex were numerically larger in stage 1 compared to HCs, whereas the opposite was the case in individuals with SCD. MANOVAs with volumes as dependent data and age, sex, years of education, and DELCODE site as covariates showed a significant interaction between diagnosis (asymptomatic versus SCD) and amyloid status (Ass42/40 negative versus positive) for hippocampal subfields. Post hoc paired comparisons taking into account the same covariates showed that dentate gyrus and CA1 volumes in SCD were significantly smaller in amyloid-positive than negative individuals. In contrast, CA1 volumes were significantly (p = 0.014) larger in stage 1 compared with HCs.ConclusionsThese data indicate that HCs and stages 1 and 2 do not correspond to linear brain volume reduction. Instead, stage 1 is associated with larger than expected volumes of hippocampal subfields in the face of amyloid pathology. This indicates a brain reserve mechanism in stage 1 that enables individuals with amyloid pathologic change to be cognitively normal and asymptomatic without subjective cognitive decline

    Mice Lacking Alkbh1 Display Sex-Ratio Distortion and Unilateral Eye Defects

    Get PDF
    Escherichia coli AlkB is a 2-oxoglutarate- and iron-dependent dioxygenase that reverses alkylated DNA damage by oxidative demethylation. Mouse AlkB homolog 1 (Alkbh1) is one of eight members of the newly discovered family of mammalian dioxygenases.In the present study we show non-Mendelian inheritance of the Alkbh1 targeted allele in mice. Both Alkbh1(-/-) and heterozygous Alkbh1(+/-) offspring are born at a greatly reduced frequency. Additionally, the sex-ratio is considerably skewed against female offspring, with one female born for every three to four males. Most mechanisms that cause segregation distortion, act in the male gametes and affect male fertility. The skewing of the sexes appears to be of paternal origin, and might be set in the pachythene stage of meiosis during spermatogenesis, in which Alkbh1 is upregulated more than 10-fold. In testes, apoptotic spermatids were revealed in 5-10% of the tubules in Alkbh1(-/-) adults. The deficiency of Alkbh1 also causes misexpression of Bmp2, 4 and 7 at E11.5 during embryonic development. This is consistent with the incompletely penetrant phenotypes observed, particularly recurrent unilateral eye defects and craniofacial malformations.Genetic and phenotypic assessment suggests that Alkbh1 mediates gene regulation in spermatogenesis, and that Alkbh1 is essential for normal sex-ratio distribution and embryonic development in mice

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2 and reports on five research projects.National Institutes of Health Contract 2 R01 DC00117National Institutes of Health Contract 1 R01 DC02032National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Contract N01 DC22402National Institutes of Health Grant R01-DC001001National Institutes of Health Grant R01-DC00270National Institutes of Health Grant 5 R01 DC00126National Institutes of Health Grant R29-DC00625U.S. Navy - Office of Naval Research Grant N00014-88-K-0604U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-1814U.S. Navy - Naval Air Warfare Center Training Systems Division Contract N61339-94-C-0087U.S. Navy - Naval Air Warfare Center Training System Division Contract N61339-93-C-0055U.S. Navy - Office of Naval Research Grant N00014-93-1-1198National Aeronautics and Space Administration/Ames Research Center Grant NCC 2-77

    Transition from Democracy - Loss of Quality, Hybridisation and Breakdown of Democracy

    Full text link
    corecore