66 research outputs found

    Investigating the role of 1-aminocyclopropane 1-carboxylic acid as a signaling molecule in the FEI cellulose synthesis pathway in Arabidopsis thaliana

    Get PDF
    Cellulose is an important structural component of plant cell walls. Recently, two receptor-like kinases, FEI1 and FEI2, were found to regulate cell wall synthesis in Arabidopsis thaliana. The fei1 fei2 double mutant, when grown on high sucrose, has short, swollen roots due to cellulose deficiency. Ethylene, a gaseous plant hormone, is known to inhibit root elongation and cause root growth defects. It was seen that disruption of ethylene biosynthesis, but not of ethylene perception, led to a reversion of the fei1 fei2 mutant phenotype. 1-aminocyclopropane-1-carboxylic acid (ACC) is the immediate ethylene precursor in its biosynthesis pathway. This, along with other biochemical and genetic analyses, suggests that ACC acts as an independent signaling molecule in the FEI pathway in Arabidopsis thaliana. ACC is synthesized from S-Adenosyl methionine (AdoMet) by ACC synthase (ACS), and is converted to ethylene by ACC oxidase (ACO). Using CRISPR-Cas9, the eight functional ACS genes and five functional ACO genes were disrupted in separate plant lines, in wild-type and fei1 fei2 backgrounds, and confirmed using restriction digest and agarose gel electrophoresis. CRISPR-Cas9 gene editing has been successfully used to disrupt all ACS and ACO genes, but not in the same plant line. Obtained higher-order mutant lines will be used to study the effect of low and high levels of ACC on cell wall perturbations. This can be used to determine potential downstream effectors of ACC and shed light on its non-canonical role as a regulator of cell wall synthesis.Bachelor of Scienc

    Lineage-specific differences and regulatory networks governing human chondrocyte development

    No full text
    To address large gaps in our understanding of the molecular regulation of articular and growth plate cartilage development in humans, we used our directed differentiation approach to generate these distinct cartilage tissues from human embryonic stem cells. The resulting transcriptomic profiles of hESC-derived articular and growth plate chondrocytes were similar to fetal epiphyseal and growth plate chondrocytes, with respect to genes both known and previously unknown to cartilage biology. With the goal to characterize the regulatory landscapes accompanying these respective transcriptomes, we mapped chromatin accessibility in hESC-derived chondrocyte lineages, and mouse embryonic chondrocytes, using ATAC-sequencing. Integration of the expression dataset with the differentially accessible genomic regions revealed lineage-specific gene regulatory networks. We validated functional interactions of two transcription factors (TFs) (RUNX2 in growth plate chondrocytes and RELA in articular chondrocytes) with their predicted genomic targets. The maps we provide thus represent a framework for probing regulatory interactions governing chondrocyte differentiation. This work constitutes a substantial step towards comprehensive and comparative molecular characterizations of distinct chondrogenic lineages and sheds new light on human cartilage development and biology

    Search for CPCP violation in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is reported for charge-parity D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP violation in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays, using data collected in proton-proton collisions at s\sqrt{s} = 13 TeV recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6 fb1^{-1}, which consists of about 10 billion events containing a pair of ẖadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays D+^{*+}\to D0π+^0\pi^+ and D^{*-}\to D0π^0\pi^-. The D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP asymmetry in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} is measured to be ACPA_{CP}( KS0^0_\mathrm{S}KS0^0_\mathrm{S}) = (6.2 ±\pm 3.0 ±\pm 0.2 ±\pm 0.8)%, where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry in the D0^0 \to KS0π+π^0_\mathrm{S}\pi^+\pi^- decay. This is the first D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state

    Search for heavy neutral leptons in final states with electrons, muons, and hadronically decaying tau leptons in proton-proton collisions at s\sqrt{s} =13 TeV

    No full text
    International audienceA search for heavy neutral leptons (HNLs) of Majorana or Dirac type using proton-proton collision data at s\sqrt{s} =13 TeV is presented. The data were collected by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 138 fb1^{-1}. Events with three charged leptons (electrons, muons, and hadronically decaying tau leptons) are selected, corresponding to HNL production in association with a charged lepton and decay of the HNL to two charged leptons and a standard model (SM) neutrino. The search is performed for HNL masses between 10 GeV and 1.5 TeV. No evidence for an HNL signal is observed in data. Upper limits at 95% confidence level are found for the squared coupling strength of the HNL to SM neutrinos, considering exclusive coupling of the HNL to a single SM neutrino generation, for both Majorana and Dirac HNLs. The limits exceed previously achieved experimental constraints for a wide range of HNL masses, and the limits on tau neutrino coupling scenarios with HNL masses above the W boson mass are presented for the first time

    Search for new resonances decaying to pairs of merged diphotons in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is presented for an extended Higgs sector with two new particles, X and ϕ\phi, in the process X \toϕϕ\phi\phi\to(γγ)(γγ)(\gamma\gamma)(\gamma\gamma). Novel neural networks classify events with diphotons that are merged and determine the diphoton masses. The search uses LHC proton-proton collision data at s\sqrt{s} = 13 TeV collected with the CMS detector, corresponding to an integrated luminosity of 138 fb1^{-1}. No evidence of such resonances is seen. Upper limits are set on the production cross section versus the resonance masses, representing the most sensitive search in this channel

    Search for ZZ and ZH production in the bbˉbbˉ\mathrm{b\bar{b}b\bar{b}} final state using proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search for ZZ and ZH production in the bbˉbbˉ\mathrm{b\bar{b}b\bar{b}} final state is presented, where H is the standard model (SM) Higgs boson. The search uses an event sample of proton-proton collisions corresponding to an integrated luminosity of 133 fb1^{-1} collected at a center-of-mass energy of 13 TeV with the CMS detector at the CERN LHC. The analysis introduces several novel techniques for deriving and validating a multi-dimensional background model based on control samples in data. A multiclass multivariate classifier customized for the bbˉbbˉ\mathrm{b\bar{b}b\bar{b}} final state is developed to derive the background model and extract the signal. The data are found to be consistent, within uncertainties, with the SM predictions. The observed (expected) upper limits at 95% confidence level are found to be 3.8 (3.8) and 5.0 (2.9) times the SM prediction for the ZZ and ZH production cross sections, respectively

    Search for the decay of the Higgs boson to a pair of light pseudoscalar bosons in the final state with four bottom quarks in proton-proton collisions at s= \sqrt{s} = 13 TeV

    No full text
    A search is presented for the decay of the 125 GeV Higgs boson (H) to a pair of new light pseudoscalar bosons (a \mathrm{a} ), followed by the prompt decay of each a boson to a bottom quark-antiquark pair, Haabbbb \mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}} . The analysis is performed using a data sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. To reduce the background from standard model processes, the search requires the Higgs boson to be produced in association with a leptonically decaying W or Z boson. The analysis probes the production of new light bosons in a 15 <ma< < m_{\mathrm{a}} < 60 GeV mass range. Assuming the standard model predictions for the Higgs boson production cross sections for pp \to WH and ZH, model independent upper limits at 95% confidence level are derived for the branching fraction B(Haabbbb) \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}}) . The combined WH and ZH observed upper limit on the branching fraction ranges from 1.10 for ma= m_{\mathrm{a}} = 20 GeV to 0.36 for ma= m_{\mathrm{a}} = 60 GeV, complementing other measurements in the μμττ \mu\mu\tau\tau , ττττ \tau\tau\tau\tau and bb \mathrm{b}\mathrm{b}\ell\ell (=μ \ell=\mu, τ\tau ) channels.A search is presented for the decay of the 125 GeV Higgs boson (H) to a pair of new light pseudoscalar bosons (a), followed by the prompt decay of each a boson to a bottom quark-antiquark pair, H \to aa \tobbˉbbˉ\mathrm{b\bar{b}b\bar{b}}. The analysis is performed using a data sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. To reduce the background from standard model processes, the search requires the Higgs boson to be produced in association with a leptonically decaying W or Z boson. The analysis probes the production of new light bosons in a 15 <\ltmam_\mathrm{a}<\lt 60 GeV mass range. Assuming the standard model predictions for the Higgs boson production cross sections for pp \to WH and ZH, model independent upper limits at 95% confidence level are derived for the branching fraction B\mathcal{B}(H \to aa \to bbˉbbˉ\mathrm{b\bar{b}b\bar{b}}). The combined WH and ZH observed upper limit on the branching fraction ranges from 1.10 for ma=m_\mathrm{a} = 20 GeV to 0.36 for ma=m_\mathrm{a} = 60 GeV, complementing other measurements in the μμττ\mu\mu\tau\tau, ττττ\tau\tau\tau\tau and bb\ell\ell (=\ell= μ\mu,τ\tau) channels

    The CMS Statistical Analysis and Combination Tool: COMBINE

    No full text
    International audienceThis paper describes the COMBINE software package used for statistical analyses by the CMS Collaboration. The package, originally designed to perform searches for a Higgs boson and the combined analysis of those searches, has evolved to become the statistical analysis tool presently used in the majority of measurements and searches performed by the CMS Collaboration. It is not specific to the CMS experiment, and this paper is intended to serve as a reference for users outside of the CMS Collaboration, providing an outline of the most salient features and capabilities. Readers are provided with the possibility to run COMBINE and reproduce examples provided in this paper using a publicly available container image. Since the package is constantly evolving to meet the demands of ever-increasing data sets and analysis sophistication, this paper cannot cover all details of COMBINE. However, the online documentation referenced within this paper provides an up-to-date and complete user guide

    Dark sector searches with the CMS experiment

    No full text
    Astrophysical observations provide compelling evidence for gravitationally interacting dark matter in the universe that cannot be explained by the standard model of particle physics. The extraordinary amount of data from the CERN LHC presents a unique opportunity to shed light on the nature of dark matter at unprecedented collision energies. This Report comprehensively reviews the most recent searches with the CMS experiment for particles and interactions belonging to a dark sector and for dark-sector mediators. Models with invisible massive particles are probed by searches for signatures of missing transverse momentum recoiling against visible standard model particles. Searches for mediators are also conducted via fully visible final states. The results of these searches are compared with those obtained from direct-detection experiments. Searches for alternative scenarios predicting more complex dark sectors with multiple new particles and new forces are also presented. Many of these models include long-lived particles, which could manifest themselves with striking unconventional signatures with relatively small amounts of background. Searches for such particles are discussed and their impact on dark-sector scenarios is evaluated. Many results and interpretations have been newly obtained for this Report.Astrophysical observations provide compelling evidence for gravitationally interacting dark matter in the universe that cannot be explained by the standard model of particle physics. The extraordinary amount of data from the CERN LHC presents a unique opportunity to shed light on the nature of dark matter at unprecedented collision energies. This Report comprehensively reviews the most recent searches with the CMS experiment for particles and interactions belonging to a dark sector and for dark-sector mediators. Models with invisible massive particles are probed by searches for signatures of missing transverse momentum recoiling against visible standard model particles. Searches for mediators are also conducted via fully visible final states. The results of these searches are compared with those obtained from direct-detection experiments. Searches for alternative scenarios predicting more complex dark sectors with multiple new particles and new forces are also presented. Many of these models include long-lived particles, which could manifest themselves with striking unconventional signatures with relatively small amounts of background. Searches for such particles are discussed and their impact on dark-sector scenarios is evaluated. Many results and interpretations have been newly obtained for this Report

    Measurement of inclusive and differential cross sections for W+^{+}W^{-} production in proton-proton collisions at s= \sqrt{s} = 13.6 TeV

    No full text
    Measurements at s= \sqrt{s}= 13.6 TeV of the opposite-sign W boson pair production cross section in proton-proton collisions are presented. The data used in this study were collected with the CMS detector at the CERN LHC in 2022, and correspond to an integrated luminosity of 34.8 fb1 ^{-1} . Events are selected by requiring one electron and one muon of opposite charge. A maximum likelihood fit is performed on signal- and background-enriched data categories defined by the flavour and charge of the leptons, the number of jets, and number of jets originating from b quarks. An inclusive W+^{+}W^{-} production cross section of 125.7 ± \pm 5.6 pb is measured, in agreement with standard model predictions. Cross sections are also reported in a fiducial region close to that of the detector acceptance, both inclusively and differentially, as a function of the jet multiplicity in the event. For first time in proton-proton collisions, WW events with at least two reconstructed jets are studied and compared with recent theoretical predictions.Measurements at s\sqrt{s} = 13.6 TeV of the opposite-sign W boson pair production cross section in proton-proton collisions are presented. The data used in this study were collected with the CMS detector at the CERN LHC in 2022, and correspond to an integrated luminosity of 34.8 fb1^{-1}. Events are selected by requiring one electron and one muon of opposite charge. A maximum likelihood fit is performed on signal- and background-enriched data categories defined by the flavour and charge of the leptons, the number of jets, and number of jets originating from b quarks. An inclusive W+^+W^- production cross section of 125.7 ±\pm 5.6 pb is measured, in agreement with standard model predictions. Cross sections are also reported in a fiducial region close to that of the detector acceptance, both inclusively and differentially, as a function of the jet multiplicity in the event. For first time in proton-proton collisions, WW events with at least two reconstructed jets are studied and compared with recent theoretical predictions
    corecore