3 research outputs found

    A novel approach to measure mitochondrial respiration in frozen biological samples.

    Get PDF
    Respirometry is the gold standard measurement of mitochondrial oxidative function, as it reflects the activity of the electron transport chain complexes working together. However, the requirement for freshly isolated mitochondria hinders the feasibility of respirometry in multi-site clinical studies and retrospective studies. Here, we describe a novel respirometry approach suited for frozen samples by restoring electron transfer components lost during freeze/thaw and correcting for variable permeabilization of mitochondrial membranes. This approach preserves 90-95% of the maximal respiratory capacity in frozen samples and can be applied to isolated mitochondria, permeabilized cells, and tissue homogenates with high sensitivity. We find that primary changes in mitochondrial function, detected in fresh tissue, are preserved in frozen samples years after collection. This approach will enable analysis of the integrated function of mitochondrial Complexes I to IV in one measurement, collected at remote sites or retrospectively in samples residing in tissue biobanks

    Analysis and interpretation of microplate-based oxygen consumption and pH data.

    No full text
    Breakthrough technologies to measure cellular oxygen consumption and proton efflux are reigniting the study of cellular energetics by increasing the scope and pace with which discoveries are made. As we learn the variation in metabolism between cell types is large, it is helpful to continually provide additional perspectives and update our roadmap for data interpretation. In that spirit, this chapter provides the following for those conducting microplate-based oxygen consumption experiments: (i) a description of the standard parameters for measuring respiration in intact cells, (ii) a framework for data analysis and normalization, and (iii) examples of measuring respiration in permeabilized cells to follow up results observed with intact cells. Additionally, rate-based measurements of extracellular pH are increasingly used as a qualitative indicator of glycolytic flux. As a resource to help interpret these measurements, this chapter also provides a detailed accounting of proton production during glucose oxidation in the context of plate-based assays

    Putative mechanisms and biological role of coccoid form formation in Campylobacter jejuni.

    No full text
    In certain conditions Campylobacter jejuni cells are capable of changing their cell shape from a typically spiral to a coccoid form (CF). By similarity to other bacteria, the latter was initially considered to be a viable but non-culturable form capable of survival in unfavourable conditions. However, subsequent studies with C. jejuni and closely related bacteria Helicobacter pylori suggested that CF represents a non-viable, degenerative form. Until now, the issue on whether the CF of C. jejuni is viable and infective is highly controversial. Despite some preliminary experiments on characterization of CF cells, neither biochemical mechanisms nor genetic determinants involved in C. jejuni cell shape changes have been characterized. In this review, we highlight known molecular mechanisms and genes involved in CF formation in other bacteria. Since orthologous genes are also present in C. jejuni, we suggest that CF formation in these bacteria is also a regulated and genetically determined process. A possible significance of CF in the lifestyle of this important bacterial pathogen is discussed
    corecore