673 research outputs found

    Ring diagrams and electroweak phase transition in a magnetic field

    Full text link
    Electroweak phase transition in a magnetic field is investigated within the one-loop and ring diagram contributions to the effective potential in the minimal Standard Model. All fundamental fermions and bosons are included with their actual values of masses and the Higgs boson mass is considered in the range 75GeV≀mH≀115GeV75 GeV \leq m_H \leq 115 GeV. The effective potential is real at sufficiently high temperature. The important role of fermions and WW-bosons in symmetry behaviour is observed. It is found that the phase transition for the field strengths 1023−102410^{23} - 10^{24}G is of first order but the baryogenesis condition is not satisfied. The comparison with the hypermagnetic field case is done.Comment: 16 pages, Latex, changed for a mistake in the numerical par

    On (Cosmological) Singularity Avoidance in Loop Quantum Gravity

    Full text link
    Loop Quantum Cosmology (LQC), mainly due to Bojowald, is not the cosmological sector of Loop Quantum Gravity (LQG). Rather, LQC consists of a truncation of the phase space of classical General Relativity to spatially homogeneous situations which is then quantized by the methods of LQG. Thus, LQC is a quantum mechanical toy model (finite number of degrees of freedom) for LQG(a genuine QFT with an infinite number of degrees of freedom) which provides important consistency checks. However, it is a non trivial question whether the predictions of LQC are robust after switching on the inhomogeneous fluctuations present in full LQG. Two of the most spectacular findings of LQC are that 1. the inverse scale factor is bounded from above on zero volume eigenstates which hints at the avoidance of the local curvature singularity and 2. that the Quantum Einstein Equations are non -- singular which hints at the avoidance of the global initial singularity. We display the result of a calculation for LQG which proves that the (analogon of the) inverse scale factor, while densely defined, is {\it not} bounded from above on zero volume eigenstates. Thus, in full LQG, if curvature singularity avoidance is realized, then not in this simple way. In fact, it turns out that the boundedness of the inverse scale factor is neither necessary nor sufficient for curvature singularity avoidance and that non -- singular evolution equations are neither necessary nor sufficient for initial singularity avoidance because none of these criteria are formulated in terms of observable quantities.After outlining what would be required, we present the results of a calculation for LQG which could be a first indication that our criteria at least for curvature singularity avoidance are satisfied in LQG.Comment: 34 pages, 16 figure

    Spectral Statistics in Chaotic Systems with Two Identical Connected Cells

    Full text link
    Chaotic systems that decompose into two cells connected only by a narrow channel exhibit characteristic deviations of their quantum spectral statistics from the canonical random-matrix ensembles. The equilibration between the cells introduces an additional classical time scale that is manifest also in the spectral form factor. If the two cells are related by a spatial symmetry, the spectrum shows doublets, reflected in the form factor as a positive peak around the Heisenberg time. We combine a semiclassical analysis with an independent random-matrix approach to the doublet splittings to obtain the form factor on all time (energy) scales. Its only free parameter is the characteristic time of exchange between the cells in units of the Heisenberg time.Comment: 37 pages, 15 figures, changed content, additional autho

    Signature of Chaotic Diffusion in Band Spectra

    Full text link
    We investigate the two-point correlations in the band spectra of spatially periodic systems that exhibit chaotic diffusion in the classical limit. By including level pairs pertaining to non-identical quasimomenta, we define form factors with the winding number as a spatial argument. For times smaller than the Heisenberg time, they are related to the full space-time dependence of the classical diffusion propagator. They approach constant asymptotes via a regime, reflecting quantal ballistic motion, where they decay by a factor proportional to the number of unit cells. We derive a universal scaling function for the long-time behaviour. Our results are substantiated by a numerical study of the kicked rotor on a torus and a quasi-one-dimensional billiard chain.Comment: 8 pages, REVTeX, 5 figures (eps

    Distribution of "level velocities" in quasi 1D disordered or chaotic systems with localization

    Full text link
    The explicit analytical expression for the distribution function of parametric derivatives of energy levels ("level velocities") with respect to a random change of scattering potential is derived for the chaotic quantum systems belonging to the quasi 1D universality class (quantum kicked rotator, "domino" billiard, disordered wire, etc.).Comment: 11 pages, REVTEX 3.

    External Fields as a Probe for Fundamental Physics

    Full text link
    Quantum vacuum experiments are becoming a flexible tool for investigating fundamental physics. They are particularly powerful for searching for new light but weakly interacting degrees of freedom and are thus complementary to accelerator-driven experiments. I review recent developments in this field, focusing on optical experiments in strong electromagnetic fields. In order to characterize potential optical signatures, I discuss various low-energy effective actions which parameterize the interaction of particle-physics candidates with optical photons and external electromagnetic fields. Experiments with an electromagnetized quantum vacuum and optical probes do not only have the potential to collect evidence for new physics, but special-purpose setups can also distinguish between different particle-physics scenarios and extract information about underlying microscopic properties.Comment: 12 pages, plenary talk at QFEXT07, Leipzig, September 200

    Dissipative quantum chaos: transition from wave packet collapse to explosion

    Full text link
    Using the quantum trajectories approach we study the quantum dynamics of a dissipative chaotic system described by the Zaslavsky map. For strong dissipation the quantum wave function in the phase space collapses onto a compact packet which follows classical chaotic dynamics and whose area is proportional to the Planck constant. At weak dissipation the exponential instability of quantum dynamics on the Ehrenfest time scale dominates and leads to wave packet explosion. The transition from collapse to explosion takes place when the dissipation time scale exceeds the Ehrenfest time. For integrable nonlinear dynamics the explosion practically disappears leaving place to collapse.Comment: 4 pages, 4 figure

    Periodic Chaotic Billiards: Quantum-Classical Correspondence in Energy Space

    Full text link
    We investigate the properties of eigenstates and local density of states (LDOS) for a periodic 2D rippled billiard, focusing on their quantum-classical correspondence in energy representation. To construct the classical counterparts of LDOS and the structure of eigenstates (SES), the effects of the boundary are first incorporated (via a canonical transformation) into an effective potential, rendering the one-particle motion in the 2D rippled billiard equivalent to that of two-interacting particles in 1D geometry. We show that classical counterparts of SES and LDOS in the case of strong chaotic motion reveal quite a good correspondence with the quantum quantities. We also show that the main features of the SES and LDOS can be explained in terms of the underlying classical dynamics, in particular of certain periodic orbits. On the other hand, statistical properties of eigenstates and LDOS turn out to be different from those prescribed by random matrix theory. We discuss the quantum effects responsible for the non-ergodic character of the eigenstates and individual LDOS that seem to be generic for this type of billiards with a large number of transverse channels.Comment: 13 pages, 18 figure

    Theory of Circle Maps and the Problem of One-Dimensional Optical Resonator with a Periodically Moving Wall

    Full text link
    We consider the electromagnetic field in a cavity with a periodically oscillating perfectly reflecting boundary and show that the mathematical theory of circle maps leads to several physical predictions. Notably, well-known results in the theory of circle maps (which we review briefly) imply that there are intervals of parameters where the waves in the cavity get concentrated in wave packets whose energy grows exponentially. Even if these intervals are dense for typical motions of the reflecting boundary, in the complement there is a positive measure set of parameters where the energy remains bounded.Comment: 34 pages LaTeX (revtex) with eps figures, PACS: 02.30.Jr, 42.15.-i, 42.60.Da, 42.65.Y

    Semiclassical quantisation of space-times with apparent horizons

    Full text link
    Coherent or semiclassical states in canonical quantum gravity describe the classical Schwarzschild space-time. By tracing over the coherent state wavefunction inside the horizon, a density matrix is derived. Bekenstein-Hawking entropy is obtained from the density matrix, modulo the Immirzi parameter. The expectation value of the area and curvature operator is evaluated in these states. The behaviour near the singularity of the curvature operator shows that the singularity is resolved. We then generalise the results to space-times with spherically symmetric apparent horizons.Comment: 52 pages, 4 figure
    • 

    corecore