2 research outputs found
The Holst Spin Foam Model via Cubulations
Spin foam models are an attempt for a covariant, or path integral formulation
of canonical loop quantum gravity. The construction of such models usually rely
on the Plebanski formulation of general relativity as a constrained BF theory
and is based on the discretization of the action on a simplicial triangulation,
which may be viewed as an ultraviolet regulator. The triangulation dependence
can be removed by means of group field theory techniques, which allows one to
sum over all triangulations. The main tasks for these models are the correct
quantum implementation of the Plebanski constraints, the existence of a
semiclassical sector implementing additional "Regge-like" constraints arising
from simplicial triangulations, and the definition of the physical inner
product of loop quantum gravity via group field theory. Here we propose a new
approach to tackle these issues stemming directly from the Holst action for
general relativity, which is also a proper starting point for canonical loop
quantum gravity. The discretization is performed by means of a "cubulation" of
the manifold rather than a triangulation. We give a direct interpretation of
the resulting spin foam model as a generating functional for the n-point
functions on the physical Hilbert space at finite regulator. This paper focuses
on ideas and tasks to be performed before the model can be taken seriously.
However, our analysis reveals some interesting features of this model: first,
the structure of its amplitudes differs from the standard spin foam models.
Second, the tetrad n-point functions admit a "Wick-like" structure. Third, the
restriction to simple representations does not automatically occur -- unless
one makes use of the time gauge, just as in the classical theory.Comment: 25 pages, 1 figure; v3: published version. arXiv admin note:
substantial text overlap with arXiv:0911.213
Coarse graining methods for spin net and spin foam models
We undertake first steps in making a class of discrete models of quantum
gravity, spin foams, accessible to a large scale analysis by numerical and
computational methods. In particular, we apply Migdal-Kadanoff and Tensor
Network Renormalization schemes to spin net and spin foam models based on
finite Abelian groups and introduce `cutoff models' to probe the fate of gauge
symmetries under various such approximated renormalization group flows. For the
Tensor Network Renormalization analysis, a new Gauss constraint preserving
algorithm is introduced to improve numerical stability and aid physical
interpretation. We also describe the fixed point structure and establish an
equivalence of certain models.Comment: 39 pages, 13 figures, 1 tabl