5,944 research outputs found

    Trigonometric Parallaxes for 1,507 Nearby Mid-to-Late M-dwarfs

    Full text link
    The MEarth survey is a search for small rocky planets around the smallest, nearest stars to the Sun as identified by high proper motion with red colors. We augmented our planetary search time series with lower cadence astrometric imaging and obtained two million images of approximately 1800 stars suspected to be mid-to-late M dwarfs. We fit an astrometric model to MEarth's images for 1507 stars and obtained trigonometric distance measurements to each star with an average precision of 5 milliarcseconds. Our measurements, combined with the 2MASS photometry, allowed us to obtain an absolute K_s magnitude for each star. In turn, this allows us to better estimate the stellar parameters than those obtained with photometric estimates alone and to better prioritize the targets chosen to monitor at high cadence for planetary transits. The MEarth sample is mostly complete out to a distance of 25 parsecs for stars of type M5.5V and earlier, and mostly complete for later type stars out to 20 parsecs. We find eight stars that are within ten parsecs of the Sun for which there did not exist a published trigonometric parallax distance estimate. We release with this work a catalog of the trigonometric parallax measurements for 1,507 mid-to-late M-dwarfs, as well as new estimates of their masses and radii.Comment: ApJ, accepted. 36 pages, 8 figures, 2 tables. Please find our data table here: http://www.cfa.harvard.edu/MEarth/DataDR2.htm

    A Search for Additional Bodies in the GJ 1132 Planetary System from 21 Ground-based Transits and a 100 Hour Spitzer Campaign

    Get PDF
    We present the results of a search for additional bodies in the GJ 1132 system through two methods: photometric transits and transit timing variations of the known planet. We collected 21 transit observations of GJ 1132b with the MEarth-South array since 2015. We obtained 100 near-continuous hours of observations with the SpitzerSpitzer Space Telescope, including two transits of GJ 1132b and spanning 60\% of the orbital phase of the maximum period at which bodies coplanar with GJ 1132b would pass in front of the star. We exclude transits of additional Mars-sized bodies, such as a second planet or a moon, with a confidence of 99.7\%. When we combine the mass estimate of the star (obtained from its parallax and apparent KsK_s band magnitude) with the stellar density inferred from our high-cadence SpitzerSpitzer light curve (assuming zero eccentricity), we measure the stellar radius of GJ 1132 to be 0.2105−0.0085+0.0102R⊙0.2105^{+0.0102}_{-0.0085} R_\odot, and we refine the radius measurement of GJ 1132b to 1.130±0.056R⊕1.130 \pm 0.056 R_\oplus. Combined with HARPS RV measurements, we determine the density of GJ 1132b to be 6.2±2.06.2 \pm 2.0\ g cm−3^{-3}, with the mass determination dominating this uncertainty. We refine the ephemeris of the system and find no evidence for transit timing variations, which would be expected if there was a second planet near an orbital resonance with GJ 1132b.Comment: 29 pages, 4 Tables, 8 Figures, Submitted to ApJ. Comments welcom

    The rotation and Galactic kinematics of mid M dwarfs in the Solar Neighborhood

    Full text link
    Rotation is a directly-observable stellar property, and drives magnetic field generation and activity through a magnetic dynamo. Main sequence stars with masses below approximately 0.35Msun (mid-to-late M dwarfs) are fully-convective, and are expected to have a different type of dynamo mechanism than solar-type stars. Measurements of their rotation rates provide insights into these mechanisms, but few rotation periods are available for these stars at field ages. Using photometry from the MEarth transit survey, we measure rotation periods for 387 nearby, mid-to-late M dwarfs in the Northern hemisphere, finding periods from 0.1 to 140 days. The typical detected rotator has stable, sinusoidal photometric modulations at a semi-amplitude of 0.5 to 1%. We find no period-amplitude relation for stars below 0.25Msun and an anti-correlation between period and amplitude for higher-mass M dwarfs. We highlight the existence of older, slowly-rotating stars without H{\alpha} emission that nevertheless have strong photometric variability. The Galactic kinematics of our sample is consistent with the local population of G and K dwarfs, and rotators have metallicities characteristic of the Solar Neighborhood. We use the W space velocities and established age-velocity relations to estimate that stars with P<10 days are on average <2 Gyrs, and that those with P>70 days are about 5 Gyrs. The period distribution is mass dependent: as the mass decreases, the slowest rotators at a given mass have longer periods, and the fastest rotators have shorter periods. We find a lack of stars with intermediate rotation periods. [Abridged]Comment: Accepted to ApJ. Machine readable tables and additional figures are available in the published article or on reques

    Load control in atm networks

    Get PDF

    How Important Are Risk-Taking Incentives in Executive Compensation?

    Get PDF
    This paper investigates whether observed executive compensation contracts are designed to provide risk-taking incentives in addition to effort incentives. We develop a stylized principal-agent model that captures the interdependence between firm risk and managerial incentives. We calibrate the model to individual CEO data and show that it can explain observed compensation practice surprisingly well. In particular, it justifies large option holdings and high base salaries. Our analysis suggests that options should be issued in the money. If tax effects are taken into account, the model is consistent with the almost uniform use of at-the-money stock options. We conclude that the provision of risk-taking incentives is a major objective in executive compensation practice

    Bures volume of the set of mixed quantum states

    Full text link
    We compute the volume of the N^2-1 dimensional set M_N of density matrices of size N with respect to the Bures measure and show that it is equal to that of a N^2-1 dimensional hyper-halfsphere of radius 1/2. For N=2 we obtain the volume of the Uhlmann 3-D hemisphere, embedded in R^4. We find also the area of the boundary of the set M_N and obtain analogous results for the smaller set of all real density matrices. An explicit formula for the Bures-Hall normalization constants is derived for an arbitrary N.Comment: 15 revtex pages, 2 figures in .eps; ver. 3, Eq. (4.19) correcte
    • …
    corecore