111 research outputs found

    On the accuracy of capillary flow porometry for fibrous filter media

    Get PDF
    The application of capillary flow porometry by gas-liquid displacement to the measurement of the pore size distribution in identical glass microfiber filter media can lead to surprisingly divergent results. The causes for these differences as well as the factors that influence the over-all reliability of data obtained by this widely used technique are investigated. Among the key factors studied were the volatility and viscosity of four common wetting liquids, the scan rate (i.e. the holding time between increments of differential pressure Δp or volumetric flowrate V̇ ), and the scan sequence (i.e. dry before wet, or wet before dry scan). Most measurements were made with a porometer designed in house, in order to have complete control over all aspects of operation. Data obtained with commercial porometers are also reported. For best comparability, all measurements were made with the same batch of standard glass microfiber media. The largest error source by far was the volatility of fluorinated compounds commonly used as wetting liquids. While the vapor pressures of such compounds may be relatively low, their use in combination with a flow of air through the porous matrix can have an enormous effect on the evaporation rate during a scan. Neglecting this effect (which obviously depends on the scan rate) may ultimately result in an error of almost arbitrary magnitude in the pore size distribution. Silicone oil on the other hand has a negligible volatility and provides reliable results for a wide range of operating conditions. The liquid viscosity in the tested range of 5–100 mm^2/s played a comparatively insignificant role. These and other factors of uncertainty are discussed on the basis of experimental data

    Impact of Residential Real-World Wood Stove Operation on Air Quality concerning PM2.5 Immission

    Get PDF
    In Germany, the number of small wood-burning combustion plants was around 11 million in 2020. The PM2.5 immissions caused by the operation of these combustion plants are already about as high as those from traffic exhaust gases. Thus, particulate matter immissions occur not only on busy roads but also in residential areas. Since there are few official measuring stations for PM2.5 in residential areas and suburbs, this study determined PM2.5 concentrations from November 2020 to June 2021 at three stations (urban, suburban, and residential) in the Karlsruhe area. Simultaneous measurements of PM2.5 at the three locations have been implemented to determine short-term (peaks), medium-term, and long-term particulate matter levels and to assign them to sources by observation, considering wind direction. Illustratively, PM2.5 immission levels in January and May 2021 were compared in this paper. The comparison of the particulate matter immissions measured in the urban and residential area in January revealed that PM2.5 concentration peaks of up to 60 μg/m3 occurred for short periods in the residential area, especially on Fridays and in the evenings, which could be assigned towood stove operation. In the urban and suburban areas, the number of the immission peaks was lower by 70–80%, and the peak concentrations were also lower by an average of 13–18%. However, the high short-term peaks have no significant impact when calculating the PM2.5 annual average according to the current limit value regulation (39. BImSchV)

    Investigation of the Rearrangement of Reactive–Inert Particulate Structures in a Single Channel of a Wall-Flow Filter

    Get PDF
    Wall-flow filters are a standard component in exhaust gas aftertreatment and have become indispensable in vehicles. Ash and soot particles generated during engine combustion are deposited in diesel or gasoline particulate filters. During regeneration, the soot particles are oxidized. The remaining ash particles can form different deposition patterns: a homogenous layer or plug-end filling. It has not yet been clarified whether the plug-end filling is first formed by rearrangements of agglomerates before and during the regeneration of the reactive particles. In this study, experiments are carried out with a single channel of a wall-flow filter. For the investigations, a layer of inert and reactive particles is formed. The rearrangement of agglomerates is achieved by flowing through the model filter channel and observed with a high-speed camera. The particulate structures detach at the channel inlet, are transported along the channel and deposited at the plug. The velocity of the detached agglomerates depends on their size, shape, track and the gas velocity in the channel. If the agglomerate is near the walls of the model filter channel, the gas velocity deviates from the gas velocity in the core flow. The higher the gas velocity, the higher the agglomerate velocity achieved and the larger the detached agglomerates

    The 100 most cited articles investigating the radiological staging of oesophageal and junctional cancer: a bibliometric analysis

    Get PDF
    Objectives Accurate staging of oesophageal cancer (OC) is vital. Bibliometric analysis highlights key topics and publications that have shaped understanding of a subject. The 100 most cited articles investigating radiological staging of OC are identified. Methods The Thomas Reuters Web of Science database with search terms including “CT, PET, EUS, oesophageal and gastro-oesophageal junction cancer” was used to identify all English language, full-script articles. The 100 most cited articles were further analysed by topic, journal, author, year and institution. Results A total of 5,500 eligible papers were returned. The most cited paper was Flamen et al. (n = 306), investigating the utility of positron emission tomography (PET) for the staging of patients with potentially operable OC. The most common research topic was accuracy of staging investigations (n = 63). The article with the highest citation rate (38.00), defined as the number of citations divided by the number of complete years published, was Tixier et al. investigating PET texture analysis to predict treatment response to neo-adjuvant chemo-radiotherapy, cited 114 times since publication in 2011. Conclusion This bibliometric analysis has identified key publications regarded as important in radiological OC staging. Articles with the highest citation rates all investigated PET imaging, suggesting this modality could be the focus of future research

    Experimentelle Beiträge zur Kenntnis der Wirkung der Bakterientoxine auf die Gefäßwand

    No full text

    Zur Kenntnis des Muskelrhythmus

    No full text
    • …
    corecore