224 research outputs found

    Therapeutic molecular targets of SSc-ILD

    Get PDF
    Systemic sclerosis is a fibrosing chronic connective tissue disease of unknown etiology. A major hallmark of systemic sclerosis is the uncontrolled and persistent activation of fibroblasts, which release excessive amounts of extracellular matrix, lead to organ dysfunction, and cause high mobility and motility of patients. Systemic sclerosis–associated interstitial lung disease is one of the most common fibrotic organ manifestations in systemic sclerosis and a major cause of death. Treatment options for systemic sclerosis–associated interstitial lung disease and other fibrotic manifestations, however, remain very limited. Thus, there is a huge medical need for effective therapies that target tissue fibrosis, vascular alterations, inflammation, and autoimmune disease in systemic sclerosis–associated interstitial lung disease. In this review, we discuss data suggesting therapeutic ways to target different genes in distinct tissues/organs that contribute to the development of SSc

    Vascular endothelial growth factor aggravates fibrosis and vasculopathy in experimental models of systemic sclerosis

    Get PDF
    Objectives: High levels of vascular endothelial growth factor (VEGF), a key angiogenic factor, are present in patients with systemic sclerosis (SSc), but its role in the pathogenesis of fibrosis and its contribution to the disturbed angiogenesis of SSc remains hypothetical. Methods: Mono (+/−) and double (+/+) VEGF transgenic (tg) mice and their wildtype (wt) controls were analysed. The bleomycin model was applied to VEGF tg mice to evaluate effects of VEGF under proinflammatory conditions. Additionally, tight skin (TSK) 1/VEGF+/+ mice were generated to mimic later non-inflammatory stages of SSc. Results: VEGF+/+, but not VEGF+/− tg mice, spontaneously developed significant skin fibrosis, indicating profibrotic effect of VEGF in a gene-dosing manner. In the proinflammatory bleomycin model, the profibrotic effect became more pronounced with induction of skin fibrosis in VEGF+/− tg mice and even more enhanced fibrosis in VEGF+/+ tg mice. Analysis in TSK1/VEGF+/+ mice showed similar profibrotic effects of VEGF also under non-inflammatory in vivo conditions. In vitro analysis revealed that VEGF is able to directly induce collagen synthesis in dermal fibroblasts. Additionally, there was an inverse gene-dosing effect on the efficacy of angiogenesis in that a higher number of microvessels was observed in VEGF+/− tg mice than in VEGF+/+ tg mice. Conclusions: These data provide the first evidence for VEGF as a novel molecular link between fibrosis and vasculopathy in the pathogenesis of SSc. They suggest that high levels of VEGF potently induce fibrosis in inflammatory and non-inflammatory stages, and also contribute to the relatively insufficient angiogenesis characteristic for SSc

    Inhibition of sumoylation prevents experimental fibrosis

    Get PDF
    Objectives: Fibrosis is a predominant cause of death in systemic sclerosis (SSc). First epigenetic modifications have recently been shown to contribute to activation of SSc fibroblasts. Here, we investigated inhibition of sumoylation as a novel antifibrotic approach. Methods: Sumoylation was inhibited by siRNA-mediated knockdown of the Small Ubiquitin-like MOdifiers (SUMO) E2-conjugating enzyme Ubc9, which is essential for sumoylation. The effects of knockdown of Ubc9 were analysed in bleomycin-induced dermal fibrosis, and in the model of fibrosis induced by overexpression of a constitutively active TGF-beta receptor type I (TBR). SUMO-1 and phosphorylated Smad3 were detected by immunohistochemistry. Results: Increased staining for SUMO-1 was detected in patients with SSc and in experimental fibrosis. Inhibition of sumoylation exerted potent antifibrotic effects and prevented dermal thickening, myofibroblast differentiation and accumulation of collagen induced by bleomycin, or by overexpression of constitutively active TBR. Moreover, knockdown of Ubc9 reduced the accumulation of phosphorylated Smad3 in experimental fibrosis indicating that inhibition of sumoylation may normalise canonical TGF-β signalling in vivo. Conclusions: We demonstrate that inhibition of sumoylation reduces canonical TGF-β signalling and prevents experimental fibrosis in different preclinical models. These data provide first evidence that targeting of aberrant sumoylation may be a novel therapeutic approach for fibrotic diseases

    Fra-2 transgenic mice as a novel model of pulmonary hypertension associated with systemic sclerosis

    Get PDF
    Objective: Systemic sclerosis-associated pulmonary arterial hypertension differs from idiopathic pulmonary arterial hypertension with respect to histopathology, treatment responses and survival. Medical progress on PAH is hampered by the lack of human biosamples and suitable animal models. In this study, the authors evaluated fos-related antigen 2 (Fra-2) transgenic mice as a novel model for systemic sclerosis-associated pulmonary arterial hypertension. Methods: Lung sections of Fra-2 transgenic (n=12) and wild-type mice (n=6) were analysed at 16 weeks by histology using Dana Point criteria. Cellular and molecular key players were assessed by immunohistochemistry. To test the model's sensitivity to change over treatment, a subgroup of Fra-2 transgenic mice (n=6) was treated with the tyrosine kinase inhibitor nilotinib twice daily 37.5 mg orally from 8 weeks of age. Results: Fra-2 transgenic mice developed severe vascular remodelling of pulmonary arteries and non-specific interstitial pneumonia-like interstitial lung disease resembling human systemic sclerosis-associated pulmonary hypertension. Histological features typical for systemic sclerosis-associated pulmonary arterial hypertension, such as intimal thickening with concentric laminar lesions, medial hypertrophy, perivascular inflammatory infiltrates, adventitial fibrosis, but not pulmonary occlusive venopathy were frequently detected. Platelet-derived growth factor signalling pathways were activated in pulmonary vessels of Fra-2 transgenic compared with wild-type mice. Since treatment with nilotinib strongly prevented the development of proliferative vasculopathy and lung fibrosis, the model proved to be sensitive to treatment. Conclusions: This study suggests that Fra-2 transgenic mice as an animal model of systemic sclerosis-associated pulmonary arterial hypertension display main characteristic features of the human disease. It therefore allows studying pathophysiological aspects and might serve as a preclinical model for interventional proof-of-concept studies

    Stimulators of soluble guanylate cyclase (sGC) inhibit experimental skin fibrosis of different aetiologies

    Get PDF
    Objectives Stimulators of the soluble guanylate cyclase (sGC) have recently been shown to inhibit transforming growth factor-β signalling. Here, we aimed to demonstrate that riociguat, the drug candidate for clinical trials in systemic sclerosis (SSc), is effective in experimental fibrosis and to compare its efficacy to that of phosphodiesterase V inhibitors that also increase the intracellular levels of cyclic guanosine monophosphate. Methods The antifibrotic effects of riociguat and sildenafil were compared in the tight-skin 1 model, in bleomycin-induced fibrosis and in a model of sclerodermatous chronic graft-versus-host-disease (cGvHD). Doses of 0.1–3 mg/kg twice a day for riociguat and of 3–10 mg/kg twice a day for sildenafil were used. Result Riociguat dose-dependently reduced skin thickening, myofibroblast differentiation and accumulation of collagen with potent antifibrotic effects at 1 and 3 mg/kg. Riociguat also ameliorated fibrosis of the gastrointestinal tract in the cGvHD model. The antifibrotic effects were associated with reduced phosphorylation of extracellular signal-regulated kinases. Sildenafil at doses of 3 and 10 mg/kg exerted mild antifibrotic effects that were significantly less pronounced compared with 1 and 3 mg/kg riociguat. Conclusions These data demonstrated potent antifibrotic effects of riociguat on experimental skin and organ fibrosis. These findings suggest a role for riociguat for the treatment of fibrotic diseases, especially for the treatment of SSc. A phase II study with riociguat in patients with SSc is currently starting

    Sirt1 regulates canonical TGF-β signalling to control fibroblast activation and tissue fibrosis

    Get PDF
    Background: Sirt1 is a member of the sirtuin family of proteins. Sirt1 is a class III histone deacetylase with important regulatory roles in transcription, cellular differentiation, proliferation and metabolism. As aberrant epigenetic modifications have been linked to the pathogenesis of systemic sclerosis (SSc), we aimed to investigate the role of Sirt1 in fibroblast activation. Methods: Sirt1 expression was analysed by real-time PCR, western blot and immunohistochemistry. Sirt1 signalling was modulated with the Sirt1 agonist resveratrol and by fibroblast-specific knockout. The role of Sirt1 was evaluated in bleomycin-induced skin fibrosis and in mice overexpressing a constitutively active transforming growth fac­tor-β (TGF-β) receptor I (TBRIact). Results: The expression of Sirt1 was decreased in patients with SSc and in experimental fibrosis in a TGF-β-dependent manner. Activation of Sirt1 potentiated the profibrotic effects of TGF-β with increased Smad reporter activity, elevated transcription of TGF-β target genes and enhanced release of collagen. In contrast, knockdown of Sirt1 inhibited TGF-β/SMAD signalling and reduced release of collagen in fibroblasts. Consistently, mice with fibroblast-specific knockdown of Sirt1 were less susceptible to bleomycin- or TBRIact-induced fibrosis. Conclusions: We identified Sirt1 as a crucial regulator of TGF-β/Smad signalling in SSc. Although Sirt1 is downregulated, this decrease is not sufficient to counterbalance the excessive activation of TGF-β signalling in SSc. However, augmentation of this endogenous regulatory mechanism, for example, by knockdown of Sirt1, can effectively inhibit TGF-β signalling and exerts potent antifibrotic effects. Sirt1 may thus be a key regulator of fibroblast activation in SSc

    Nintedanib inhibits fibroblast activation and ameliorates fibrosis in preclinical models of systemic sclerosis

    Get PDF
    Background: Nintedanib is a tyrosine kinase inhibitor that has recently been shown to slow disease progression in idiopathic pulmonary fibrosis in two replicate phase III clinical trials. The aim of this study was to analyse the antifibrotic effects of nintedanib in preclinical models of systemic sclerosis (SSc) and to provide a scientific background for clinical trials in SSc. Methods: The effects of nintedanib on migration, proliferation, myofibroblast differentiation and release of extracellular matrix of dermal fibroblasts were analysed by microtitre tetrazolium and scratch assays, stress fibre staining, qPCR and SirCol assays. The antifibrotic effects of nintedanib were evaluated in bleomycin-induced skin fibrosis, in a murine sclerodermatous chronic graft-versus-host disease model and in tight-skin-1 mice. Results: Nintedanib dose-dependently reduced platelet-derived growth factor-induced and transforming growth factor-β-induced proliferation and migration as well as myofibroblast differentiation and collagen release of dermal fibroblasts from patients with and healthy individuals. Nintedanib also inhibited the endogenous activation of SSc fibroblasts. Nintedanib prevented bleomycin-induced skin fibrosis in a dose-dependent manner and was also effective in the treatment of established fibrosis. Moreover, treatment with nintedanib ameliorated fibrosis in the chronic graft-versus-host disease model and in tight-skin-1 mice in well-tolerated doses. Conclusions: We demonstrate that nintedanib effectively inhibits the endogenous as well as cytokine-induced activation of SSc fibroblasts and exerts potent antifibrotic effects in different complementary mouse models of SSc. These data have direct translational implications for clinical trials with nintedanib in SSc

    Activation of pregnane X receptor inhibits experimental dermal fibrosis

    Get PDF
    Objective: To assess the antifibrotic effects of pregnane X receptors (PXRs) in experimental dermal fibrosis. Methods: The antifibrotic effects of PXR activation by 5-pregnen-3β-ol-20-one-16α-carbonitrile (PCN) were studied in the bleomycin model for prevention of dermal fibrosis and the modified bleomycin model for the treatment of established bleomycin-induced dermal fibrosis. Activation of canonical transforming growth factor (TGF)β signalling was analysed by immunofluorescence staining for phosphorylated smads. The antifibrotic effects of PXR activation were further studied in murine fibroblasts and murine T cells under Th2 conditions. In the T cell experiments, synthesis of the profibrotic cytokines, interleukin (IL)-4 and IL-13, was assessed by quantitative PCR, and IL-13 levels in the murine skin were determined by multiplex bead array technology. Results: Activation of PXR effectively inhibited the development of bleomycin-induced dermal fibrosis and induced the regression of established dermal fibrosis as assessed by skin thickening, hydroxyproline content and myofibroblasts. Reduced levels of phosphorylated smad2 and smad3 suggested that the antifibrotic effects of PXRs were mediated by inhibition of canonical TGFβ signalling. While PXR activation appeared to have no direct effects on fibroblasts, it potently inhibited the release of the profibrotic cytokine, IL-13, from Th2 cells. Consistent with these findings, IL-13 levels were reduced in bleomycin-challenged murine skin upon PXR activation. Conclusions: Our findings demonstrate a novel antifibrotic role for PXRs in inflammatory dermal fibrosis. The antifibrotic effects of PXRs appear to be indirect: PXR activation reduces the release of the Th2 cytokine, IL-13, from T cells resulting in decreased canonical TGFβ signalling

    Inactivation of fatty acid amide hydrolase exacerbates experimental fibrosis by enhanced endocannabinoid-mediated activation of CB1

    Get PDF
    Background: Selective targeting of the cannabinoid receptors CB1 and CB2 by synthetic compounds has revealed opposing roles of both receptors in fibrosis. Objectives: To characterise the role of endogenous cannabinoids (endocannabinoids) and their predominant receptor in fibrosis. Methods: The levels of endocannabinoids in mice were modulated by pharmacological or genetic inactivation of the enzyme fatty acid amide hydrolase (FAAH). The predominant receptor for endocannabinoids was determined by selective inhibition of either CB1 or CB2. The extent of fibrosis upon challenge with bleomycin was determined by quantification of dermal thickness, hydroxyproline content and myofibroblast counts. Results: The expression of FAAH is decreased in systemic sclerosis fibroblasts. FAAH-deficient mice with strongly increased levels of endocannabinoids were more sensitive to bleomycin. Consistently, pharmacological inhibition of FAAH significantly exacerbated bleomycin-induced fibrosis. Inhibition of CB1 completely abrogated the profibrotic effects of FAAH inactivation. In contrast, inhibition of CB2 only modestly enhanced fibrosis, indicating that CB1 is the predominant receptor for endocannabinoids in experimental fibrosis. Conclusions: Increased levels of endocannabinoids induced by inactivation of FAAH worsen experimental fibrosis via activation of CB1. These findings highlight the profibrotic effects of endocannabinoids and suggest that CB1 maybe a more promising candidate for targeted treatments in fibrotic diseases than CB2

    Inactivation of tankyrases reduces experimental fibrosis by inhibiting canonical Wnt signalling

    Get PDF
    Objectives: Canonical Wnt signalling has recently emerged as a key mediator of fibroblast activation and tissue fibrosis in systemic sclerosis. Here, we investigated tankyrases as novel molecular targets for inhibition of canonical Wnt signalling in fibrotic diseases. Methods: The antifibrotic effects of the tankyrase inhibitor XAV-939 or of siRNA-mediated knockdown of tankyrases were evaluated in the mouse models of bleomycin-induced dermal fibrosis and in experimental fibrosis induced by adenoviral overexpression of a constitutively active TGF-β receptor I (Ad-TBRI). Results: Inactivation of tankyrases prevented the activation of canonical Wnt signalling in experimental fibrosis and reduced the nuclear accumulation of β-catenin and the mRNA levels of the target gene c-myc. Treatment with XAV-939 or siRNA-mediated knockdown of tankyrases in the skin effectively reduced bleomycin-induced dermal thickening, differentiation of resting fibroblasts into myofibroblasts and accumulation of collagen. Potent antifibrotic effects were also observed in Ad-TBRI driven skin fibrosis. Inhibition of tankyrases was not limited by local or systemic toxicity. Conclusions: Inactivation of tankyrases effectively abrogated the activation of canonical Wnt signalling and demonstrated potent antifibrotic effects in well-tolerated doses. Thus, tankyrases might be candidates for targeted therapies in fibrotic diseases
    corecore