16 research outputs found
Recommended from our members
Oxygen-Enhanced and Dynamic Contrast-Enhanced Optoacoustic Tomography Provide Surrogate Biomarkers of Tumor Vascular Function, Hypoxia, and Necrosis.
Measuring the functional status of tumor vasculature, including blood flow fluctuations and changes in oxygenation, is important in cancer staging and therapy monitoring. Current clinically approved imaging modalities suffer long procedure times and limited spatiotemporal resolution. Optoacoustic tomography (OT) is an emerging clinical imaging modality that may overcome these challenges. By acquiring data at multiple wavelengths, OT can interrogate hemoglobin concentration and oxygenation directly and resolve contributions from injected contrast agents. In this study, we tested whether two dynamic OT techniques, oxygen-enhanced (OE) and dynamic contrast-enhanced (DCE)-OT, could provide surrogate biomarkers of tumor vascular function, hypoxia, and necrosis. We found that vascular maturity led to changes in vascular function that affected tumor perfusion, modulating the DCE-OT signal. Perfusion in turn regulated oxygen availability, driving the OE-OT signal. In particular, we demonstrate for the first time a strong per-tumor and spatial correlation between imaging biomarkers derived from these in vivo techniques and tumor hypoxia quantified ex vivo Our findings indicate that OT may offer a significant advantage for localized imaging of tumor response to vascular-targeted therapies when compared with existing clinical DCE methods.Significance: Imaging biomarkers derived from optoacoustic tomography can be used as surrogate measures of tumor perfusion and hypoxia, potentially yielding rapid, multiparametric, and noninvasive cancer staging and therapeutic response monitoring in the clinic.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/20/5980/F1.large.jpg Cancer Res; 78(20); 5980-91. ©2018 AACR
A Novel Unsupervised Segmentation Approach Quantifies Tumor Tissue Populations Using Multiparametric MRI: First Results with Histological Validation
PURPOSE: We aimed to precisely estimate intra-tumoral heterogeneity using spatially regularized spectral clustering (SRSC) on multiparametric MRI data and compare the efficacy of SRSC with the previously reported segmentation techniques in MRI studies. PROCEDURES: Six NMRI nu/nu mice bearing subcutaneous human glioblastoma U87 MG tumors were scanned using a dedicated small animal 7T magnetic resonance imaging (MRI) scanner. The data consisted of T2 weighted images, apparent diffusion coefficient maps, and pre- and post-contrast T2 and T2* maps. Following each scan, the tumors were excised into 2–3-mm thin slices parallel to the axial field of view and processed for histological staining. The MRI data were segmented using SRSC, K-means, fuzzy C-means, and Gaussian mixture modeling to estimate the fractional population of necrotic, peri-necrotic, and viable regions and validated with the fractional population obtained from histology. RESULTS: While the aforementioned methods overestimated peri-necrotic and underestimated viable fractions, SRSC accurately predicted the fractional population of all three tumor tissue types and exhibited strong correlations (r(necrotic) = 0.92, r(peri-necrotic) = 0.82 and r(viable) = 0.98) with the histology. CONCLUSIONS: The precise identification of necrotic, peri-necrotic and viable areas using SRSC may greatly assist in cancer treatment planning and add a new dimension to MRI-guided tumor biopsy procedures. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11307-016-1009-y) contains supplementary material, which is available to authorized users
Linking imaging to omics utilizing image-guided tissue extraction
Phenotypic heterogeneity is commonly observed in diseased tissue, specifically in tumors. Multimodal imaging technologies can reveal tissue heterogeneity noninvasively in vivo, enabling imaging-based profiling of receptors, metabolism, morphology, or function on a macroscopic scale. In contrast, in vitro multiomics, immunohistochemistry, or histology techniques accurately characterize these heterogeneities in the cellular and subcellular scales in a more comprehensive but ex vivo manner. The complementary in vivo and ex vivo information would provide an enormous potential to better characterize a disease. However, this requires spatially accurate coregistration of these data by image-driven sampling as well as fast sample-preparation methods. Here, a unique image-guided milling machine and workflow for precise extraction of tissue samples from small laboratory animals or excised organs has been developed and evaluated. The samples can be delineated on tomographic images as volumes of interest and can be extracted with a spatial accuracy better than 0.25 mm. The samples remain cooled throughout the procedure to ensure metabolic stability, a precondition for accurate in vitro analysis