2 research outputs found

    Unifying the Conversation: Membrane Separation Performance in Energy, Water, and Industrial Applications

    No full text
    Dense polymer membranes enable a diverse range of separations and clean energy technologies, including gas separation, water treatment, and renewable fuel production or conversion. The transport of small molecular and ionic solutes in the majority of these membranes is described by the same solution-diffusion mechanism, yet a comparison of membrane separation performance across applications is rare. A better understanding of how structure-property relationships and driving forces compare among applications would drive innovation in membrane development by identifying opportunities for cross-disciplinary knowledge transfer. Here, we aim to inspire such cross-pollination by evaluating the selectivity and electrochemical driving forces for 29 separations across nine different applications using a common framework grounded in the physicochemical characteristics of the permeating and rejected solutes. Our analysis shows that highly selective membranes usually exhibit high solute rejection, rather than fast solute permeation, and often exploit contrasts in the size and charge of solutes rather than a nonelectrostatic chemical property, polarizability. We also highlight the power of selective driving forces (e.g., the fact that applied electric potential acts on charged solutes but not on neutral ones) to enable effective separation processes, even when the membrane itself has poor selectivity. We conclude by proposing several research opportunities that are likely to impact multiple areas of membrane science. The high-level perspective of membrane separation across fields presented herein aims to promote cross-pollination and innovation by enabling comparisons of solute transport and driving forces among membrane separation applications.ChemE/Transport Phenomen

    Anion-exchange membranes with internal microchannels for water control in CO<sub>2</sub> electrolysis

    No full text
    Electrochemical reduction of carbon dioxide (CO2R) poses substantial promise to convert abundant feedstocks (water and CO2) to value-added chemicals and fuels using solely renewable energy. However, recent membrane-electrode assembly (MEA) devices that have been demonstrated to achieve high rates of CO2R are limited by water management within the cell, due to both consumption of water by the CO2R reaction and electro-osmotic fluxes that transport water from the cathode to the anode. Additionally, crossover of potassium (K+) ions poses concern at high current densities where saturation and precipitation of the salt ions can degrade cell performance. Herein, a device architecture incorporating an anion-exchange membrane (AEM) with internal water channels to mitigate MEA dehydration is proposed and demonstrated. A macroscale, two-dimensional continuum model is used to assess water fluxes and local water content within the modified MEA, as well as to determine the optimal channel geometry and composition. The modified AEMs are then fabricated and tested experimentally, demonstrating that the internal channels can both reduce K+ cation crossover as well as improve AEM conductivity and therefore overall cell performance. This work demonstrates the promise of these materials, and operando water-management strategies in general, in handling some of the major hurdles in the development of MEA devices for CO2R.ChemE/Transport Phenomen
    corecore