6 research outputs found

    Persistence of maternal antibodies to influenza A virus among captive mallards (\u3ci\u3eAnas platyrhynchos\u3c/i\u3e)

    Get PDF
    Wild waterfowl are maintenance hosts of most influenza A virus (IAV) subtypes and are often the subjects of IAV surveillance and transmission models. While maternal antibodies have been detected in yolks and in nestlings for a variety of wild bird species and pathogens, the persistence of maternal antibodies to IAVs in mallard ducklings (Anas platyrhynchos) has not been previously investigated. Nonetheless, this information is important for a full understanding of IAV transmission dynamics because ducklings protected by maternal antibodies may not be susceptible to infection. In this study, we examined the transfer of IAV-specific maternal antibodies to ducklings. Blood samples were collected approximately every five days from ducklings hatched from hens previously infected with an H6 strain of IAV. Serum samples were tested for antibodies to IAV by an enzyme-linked immunosorbent assay. The median persistence of maternal antibodies in ducklings was 12.5 days (range: 4-33 days) post-hatch. The majority of ducklings (71%) had detectable maternal antibodies from 4 to 17 days post-hatch, while a small subset of individuals (29%) had detectable maternal antibodies for up to 21-33 days post-hatch. Antibody concentrations in hens near the time of egg laying were correlated with maternal antibody concentrations in the initial blood sample collected from ducklings (0-4 days post-hatch). Knowledge of the duration of maternal antibodies in ducklings will aid in the interpretation of IAV serological surveillance results and in the modeling of IAV transmission dynamics in waterfowl

    Persistence of maternal antibodies to influenza A virus among captivemallards (Anas platyrhynchos)

    No full text
    AbstractWild waterfowl are maintenance hosts of most influenza A virus (IAV) subtypes and are often the subjects of IAV surveillanceand transmission models. While maternal antibodies have been detected in yolks and in nestlings for a variety of wildbird species and pathogens, the persistence of maternal antibodies to IAVs in mallard ducklings (Anas platyrhynchos) hasnot been previously investigated. Nonetheless, this information is important for a full understanding of IAV transmissiondynamics because ducklings protected by maternal antibodies may not be susceptible to infection. In this study, we examinedthe transfer of IAV-specific maternal antibodies to ducklings. Blood samples were collected approximately every five daysfrom ducklings hatched from hens previously infected with an H6 strain of IAV. Serum samples were tested for antibodiesto IAV by an enzyme-linked immunosorbent assay. The median persistence of maternal antibodies in ducklings was 12.5days (range: 4-33 days) post-hatch. The majority of ducklings (71%) had detectable maternal antibodies from 4 to 17 dayspost-hatch, while a small subset of individuals (29%) had detectable maternal antibodies for up to 21-33 days post-hatch.Antibody concentrations in hens near the time of egg laying were correlated with maternal antibody concentrations in theinitial blood sample collected from ducklings (0-4 days post-hatch). Knowledge of the duration of maternal antibodies inducklings will aid in the interpretation of IAV serological surveillance results and in the modeling of IAV transmissiondynamics in waterfowl

    Avian influenza A virus susceptibility, infection, transmission, and antibody kinetics in European starlings

    Get PDF
    Avian influenza A viruses (IAVs) pose risks to public, agricultural, and wildlife health. Bridge hosts are spillover hosts that share habitat with both maintenance hosts (e.g., mallards) and target hosts (e.g., poultry). We conducted a comprehensive assessment of European starlings (Sturnus vulgaris), a common visitor to both urban and agricultural environments, to assess whether this species might act as a potential maintenance or bridge host for IAVs. First, we experimentally inoculated starlings with a wild bird IAV to investigate susceptibility and replication kinetics. Next, we evaluated whether IAV might spill over to starlings from sharing resources with a widespread IAV reservoir host. We accomplished this using a specially designed transmission cage to simulate natural environmental transmission by exposing starlings to water shared with IAV-infected mallards (Anas platyrhynchos). We then conducted a contact study to assess intraspecies transmission between starlings. In the initial experimental infection study, all inoculated starlings shed viral RNA and seroconverted. All starlings in the transmission study became infected and shed RNA at similar levels. All but one of these birds seroconverted, but detectable antibodies were relatively transient, falling to negative levels in a majority of birds by 59 days post contact. None of the contact starlings in the intraspecies transmission experiment became infected. In summary, we demonstrated that starlings may have the potential to act as IAV bridge hosts if they share water with IAV-infected waterfowl. However, starlings are unlikely to act as maintenance hosts due to limited, if any, intraspecies transmission. In addition, starlings have a relatively brief antibody response which should be considered when interpreting serology from field samples. Further study is needed to evaluate the potential for transmission from starlings to poultry, a possibility enhanced by starling\u27s behavioral trait of forming very large flocks which can descend on poultry facilities when natural resources are scarce. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication

    Persistence of maternal antibodies to influenza A virus among captive mallards (\u3ci\u3eAnas platyrhynchos\u3c/i\u3e)

    Get PDF
    Wild waterfowl are maintenance hosts of most influenza A virus (IAV) subtypes and are often the subjects of IAV surveillance and transmission models. While maternal antibodies have been detected in yolks and in nestlings for a variety of wild bird species and pathogens, the persistence of maternal antibodies to IAVs in mallard ducklings (Anas platyrhynchos) has not been previously investigated. Nonetheless, this information is important for a full understanding of IAV transmission dynamics because ducklings protected by maternal antibodies may not be susceptible to infection. In this study, we examined the transfer of IAV-specific maternal antibodies to ducklings. Blood samples were collected approximately every five days from ducklings hatched from hens previously infected with an H6 strain of IAV. Serum samples were tested for antibodies to IAV by an enzyme-linked immunosorbent assay. The median persistence of maternal antibodies in ducklings was 12.5 days (range: 4-33 days) post-hatch. The majority of ducklings (71%) had detectable maternal antibodies from 4 to 17 days post-hatch, while a small subset of individuals (29%) had detectable maternal antibodies for up to 21-33 days post-hatch. Antibody concentrations in hens near the time of egg laying were correlated with maternal antibody concentrations in the initial blood sample collected from ducklings (0-4 days post-hatch). Knowledge of the duration of maternal antibodies in ducklings will aid in the interpretation of IAV serological surveillance results and in the modeling of IAV transmission dynamics in waterfowl

    Leptospira borgpetersenii serovar Hardjo and Leptospira santarosai serogroup Pyrogenes isolated from bovine dairy herds in Puerto Rico

    No full text
    Leptospirosis is one of the most common zoonotic diseases in the world and endemic in the Caribbean Islands. Bovine leptospirosis is an important reproductive disease. Globally, cattle are recognized as a reservoir host for L. borgpetersenii serovar Hardjo, which is transmitted via urine, semen, and uterine discharges, and can result in abortion and poor reproductive performance. The dairy industry in Puerto Rico comprises up to 25% of agriculture-related income and is historically the most financially important agricultural commodity on the island. In this study, we report the isolation of two different pathogenic Leptospira species, from two different serogroups, from urine samples collected from dairy cows in Puerto Rico: L. borgpetersenii serogroup Sejroe serovar Hardjo and L. santarosai serogroup Pyrogenes. Recovered isolates were classified using whole-genome sequencing, serotyping with reference antisera and monoclonal antibodies, and immunoblotting. These results demonstrate that dairy herds in Puerto Rico can be concurrently infected with more than one species and serovar of Leptospira, and that bacterin vaccines and serologic diagnostics should account for this when applying intervention and diagnostic strategies
    corecore