15 research outputs found

    Aspf2 From Aspergillus fumigatus Recruits Human Immune Regulators for Immune Evasion and Cell Damage

    Get PDF
    The opportunistic fungal pathogen Aspergillus fumigatus can cause life-threatening infections, particularly in immunocompromised patients. Most pathogenic microbes control host innate immune responses at the earliest time, already before infiltrating host immune cells arrive at the site of infection. Here, we identify Aspf2 as the first A. fumigatus Factor H-binding protein. Aspf2 recruits several human plasma regulators, Factor H, factor-H-like protein 1 (FHL-1), FHR1, and plasminogen. Factor H contacts Aspf2 via two regions located in SCRs6–7 and SCR20. FHL-1 binds via SCRs6–7, and FHR1 via SCRs3–5. Factor H and FHL-1 attached to Aspf2-maintained cofactor activity and assisted in C3b inactivation. A Δaspf2 knockout strain was generated which bound Factor H with 28% and FHL-1 with 42% lower intensity. In agreement with less immune regulator acquisition, when challenged with complement-active normal human serum, Δaspf2 conidia had substantially more C3b (>57%) deposited on their surface. Consequently, Δaspf2 conidia were more efficiently phagocytosed (>20%) and killed (44%) by human neutrophils as wild-type conidia. Furthermore, Aspf2 recruited human plasminogen and, when activated by tissue-type plasminogen activator, newly generated plasmin cleaved the chromogenic substrate S2251 and degraded fibrinogen. Furthermore, plasmin attached to conidia damaged human lung epithelial cells, induced cell retraction, and caused matrix exposure. Thus, Aspf2 is a central immune evasion protein and plasminogen ligand of A. fumigatus. By blocking host innate immune attack and by disrupting human lung epithelial cell layers, Aspf2 assists in early steps of fungal infection and likely allows tissue penetration

    Secreted Aspergillus fumigatus Protease Alp1 Degrades Human Complement Proteins C3, C4, and C5â–ż

    No full text
    The opportunistic human pathogenic fungus Aspergillus fumigatus is a major cause of fungal infections in immunocompromised patients. Innate immunity plays an important role in the defense against infections. The complement system represents an essential part of the innate immune system. This cascade system is activated on the surface of A. fumigatus conidia and hyphae and enhances phagocytosis of conidia. A. fumigatus conidia but not hyphae bind to their surface host complement regulators factor H, FHL-1, and CFHR1, which control complement activation. Here, we show that A. fumigatus hyphae possess an additional endogenous activity to control complement activation. A. fumigatus culture supernatant efficiently cleaved complement components C3, C4, C5, and C1q as well as immunoglobulin G. Secretome analysis and protease inhibitor studies identified the secreted alkaline protease Alp1, which is present in large amounts in the culture supernatant, as the central molecule responsible for this cleavage. An alp1 deletion strain was generated, and the culture supernatant possessed minimal complement-degrading activity. Moreover, protein extract derived from an Escherichia coli strain overproducing Alp1 cleaved C3b, C4b, and C5. Thus, the protease Alp1 is responsible for the observed cleavage and degrades a broad range of different substrates. In summary, we identified a novel mechanism in A. fumigatus that contributes to evasion from the host complement attack

    Fit for Service: Preparing Residents for Neurointensive Care with Entrustable Professional Activities: A Delphi Study.

    Get PDF
    BACKGROUND Although the relevance of neurointensive medicine and high-quality training of corresponding physicians is increasingly recognized, there is high heterogeneity in the nature, duration, and quality of neurointensive care curricula around the world. Thus, we aimed to identify, define, and establish validity evidence for entrustable professional activities (EPAs) for postgraduate training in neurointensive care to determine trainees' readiness for being on-call. METHODS After defining EPAs through an iterative process by an expert group, we used a modified Delphi approach with a single-center development process followed by a national consensus and a single-center validation step. EPAs were evaluated by using the EQual rubric (Queen's EPA Quality Rubric). Interrater reliability was measured with Krippendorff's α. RESULTS The expert group defined seven preliminary EPAs for neurointensive care. In two consecutive Delphi rounds, EPAs were adapted, and consensus was reached for level of entrustment and time of expiration. Ultimately, EPAs reached a high EQual score of 4.5 of 5 and above. Interrater reliability for the EQual scoring was 0.8. CONCLUSIONS Using a multistep Delphi process, we defined and established validity evidence for seven EPAs for neurointensive medicine with a high degree of consensus to objectively describe readiness for on-call duty in neurointensive care. This operationalization of pivotal clinical tasks may help to better train clinical residents in neurointensive care across sites and health care systems and has the potential to serve as a blueprint for training in general intensive care medicine. It also represents a starting point for further research and development of medical curricula

    Triage and Allocation of Neurocritical Care Resources During the COVID 19 Pandemic - A National Survey

    No full text
    Objective: In light of the ongoing COVID-19 pandemic and the associated hospitalization of an overwhelming number of ventilator-dependent patients, medical and/or ethical patient triage paradigms have become essential. While guidelines on the allocation of scarce resources do exist, such work within the subdisciplines of intensive care (e.g., neurocritical care) remains limited. Methods: A 16-item questionnaire was developed that sought to explore/quantify the expert opinions of German neurointensivists with regard to triage decisions. The anonymous survey was conducted via a web-based platform and in total, 96 members of the Initiative of German Neurointensive Trial Engagement (IGNITE)-study group were contacted via e-mail. The IGNITE consortium consists of an interdisciplinary panel of specialists with expertise in neuro-critical care (i.e., anesthetists, neurologists and neurosurgeons). Results: Fifty members of the IGNITE consortium responded to the questionnaire; in total the respondents were in charge of more than 500 Neuro ICU beds throughout Germany. Common determinants reported which affected triage decisions included known patient wishes (98%), the state of health before admission (96%), SOFA-score (85%) and patient age (69%). Interestingly, other principles of allocation, such as a treatment of “youngest first” (61%) and members of the healthcare sector (50%) were also noted. While these were the most accepted parameters affecting the triage of patients, a “first-come, first-served” principle appeared to be more accepted than a lottery for the allocation of ICU beds which contradicts much of what has been reported within the literature. The respondents also felt that at least one neurointensivist should serve on any interdisciplinary triage team. Conclusions: The data gathered in the context of this survey reveal the estimation/perception of triage algorithms among neurointensive care specialists facing COVID-19. Further, it is apparent that German neurointensivists strongly feel that they should be involved in any triage decisions at an institutional level given the unique resources needed to treat patients within the Neuro ICU

    Response of Osteoblasts on Amine-Based Nanocoatings Correlates with the Amino Group Density

    No full text
    Increased life expectancy in industrialized countries is causing an increased incidence of osteoporosis and the need for bioactive bone implants. The integration of implants can be improved physically, but mainly by chemical modifications of the material surface. It was recognized that amino-group-containing coatings improved cell attachment and intracellular signaling. The aim of this study was to determine the role of the amino group density in this positive cell behavior by developing controlled amino-rich nanolayers. This work used covalent grafting of polymer-based nanocoatings with different amino group densities. Titanium coated with the positively-charged trimethoxysilylpropyl modified poly(ethyleneimine) (Ti-TMS-PEI), which mostly improved cell area after 30 min, possessed the highest amino group density with an N/C of 32%. Interestingly, changes in adhesion-related genes on Ti-TMS-PEI could be seen after 4 h. The mRNA microarray data showed a premature transition of the MG-63 cells into the beginning differentiation phase after 24 h indicating Ti-TMS-PEI as a supportive factor for osseointegration. This amino-rich nanolayer also induced higher bovine serum albumin protein adsorption and caused the cells to migrate slower on the surface after a more extended period of cell settlement as an indication of a better surface anchorage. In conclusion, the cell spreading on amine-based nanocoatings correlated well with the amino group density (N/C)

    Enolase from Aspergillus fumigatus is a moonlighting protein that binds the human plasma complement proteins factor H, FHL-1, C4BP, and plasminogen

    No full text
    The opportunistic fungal pathogen Aspergillus fumigatus can cause severe infections, particularly in immunocompromised individuals. Upon infection, A. fumigatus faces the powerful and directly acting immune defense of the human host. The mechanisms on how A. fumigatus evades innate immune attack and complement are still poorly understood. Here, we identify A. fumigatus enolase, AfEno1, which was also characterized as fungal allergen, as a surface ligand for human plasma complement regulators. AfEno1 binds factor H, factor-H-like protein 1 (FHL-1), C4b binding protein (C4BP), and plasminogen. Factor H attaches to AfEno1 via two regions, via short conserved repeats (SCRs) 6–7 and 19–20, and FHL-1 contacts AfEno1 via SCRs 6–7. Both regulators when bound to AfEno1 retain cofactor activity and assist in C3b inactivation. Similarly, the classical pathway regulator C4BP binds to AfEno1 and bound to AfEno1; C4BP assists in C4b inactivation. Plasminogen which binds to AfEno1 via lysine residues is accessible for the tissue-type plasminogen activator (tPA), and active plasmin cleaves the chromogenic substrate S2251, degrades fibrinogen, and inactivates C3 and C3b. Plasmin attached to swollen A. fumigatus conidia damages human A549 lung epithelial cells, reduces the cellular metabolic activity, and induces cell retraction, which results in exposure of the extracellular matrix. Thus, A. fumigatus AfEno1 is a moonlighting protein and virulence factor which recruits several human regulators. The attached human regulators allow the fungal pathogen to control complement at the level of C3 and to damage endothelial cell layers and tissue components
    corecore