75 research outputs found

    Oxygenation effect of interventional lung assist in a lavage model of acute lung injury: a prospective experimental study

    Get PDF
    INTRODUCTION: The aim of the study was to test the hypothesis that a pumpless arteriovenous extracorporeal membrane oxygenator (interventional lung assist (ILA)) does not significantly improve oxygenation in a lavage model of acute lung injury. METHODS: The study was designed as a prospective experimental study. The experiments were performed on seven pigs (48–60 kg body weight). The pigs were anesthetized and mechanically ventilated. Both femoral arteries and one femoral vein were cannulated and connected with ILA. Acute lung injury was induced by repeated bronchoalveolar lavage until the arterial partial pressure of O(2 )was lower than 100 Torr for at least 30 minutes during ventilation with 100% O(2). RESULTS: ILA was applied with different blood flow rates through either one or both femoral arteries. Measurements were repeated at different degrees of pulmonary gas exchange impairment with the pulmonary venous admixture ranging from 35.0% to 70.6%. The mean (± standard deviation) blood flow through ILA was 15.5 (± 3.9)% and 21.7 (± 4.9)% of cardiac output with one and both arteries open, respectively. ILA significantly increased the arterial partial pressure of O(2 )from 64 (± 13) Torr to 71 (± 14) Torr and 74 (± 17) Torr with blood flow through one and both femoral arteries, respectively. O(2 )delivery through ILA increased with extracorporeal shunt flow (36 (± 14) ml O(2)/min versus 47 (± 17) ml O(2)/min) and reduced arterialization of the inlet blood. Pulmonary artery pressures were significantly reduced when ILA was in operation. CONCLUSION: Oxygenation is increased by ILA in severe lung injury. This effect is significant but small. The results indicate that the ILA use may not be justified if the improvement of oxygenation is the primary therapy goal

    Sigh in patients with acute hypoxemic respiratory failure and acute respiratory distress syndrome: the PROTECTION pilot randomized clinical trial

    Get PDF
    Background: Sigh is a cyclic brief recruitment manoeuvre: previous physiological studies showed that its use could be an interesting addition to pressure support ventilation to improve lung elastance, decrease regional heterogeneity and increase release of surfactant. Research question: Is the clinical application of sigh during pressure support ventilation (PSV) feasible? Study design and methods: We conducted a multi-center non-inferiority randomized clinical trial on adult intubated patients with acute hypoxemic respiratory failure or acute respiratory distress syndrome undergoing PSV. Patients were randomized to the No Sigh group and treated by PSV alone, or to the Sigh group, treated by PSV plus sigh (increase of airway pressure to 30 cmH2Ofor 3 seconds once per minute) until day 28 or death or successful spontaneous breathing trial. The primary endpoint of the study was feasibility, assessed as non-inferiority (5% tolerance) in the proportion of patients failing assisted ventilation. Secondary outcomes included safety, physiological parameters in the first week from randomization, 28-day mortality and ventilator-free days. Results: Two-hundred fifty-eight patients (31% women; median age 65 [54-75] years) were enrolled. In the Sigh group, 23% of patients failed to remain on assisted ventilation vs. 30% in the No Sigh group (absolute difference -7%, 95%CI -18% to 4%; p=0.015 for non-inferiority). Adverse events occurred in 12% vs. 13% in Sigh vs. No Sigh (p=0.852). Oxygenation was improved while tidal volume, respiratory rate and corrected minute ventilation were lower over the first 7 days from randomization in Sigh vs. No Sigh. There was no significant difference in terms of mortality (16% vs. 21%, p=0.342) and ventilator-free days (22 [7-26] vs. 22 [3-25] days, p=0.300) for Sigh vs. No Sigh. Interpretation: Among hypoxemic intubated ICU patients, application of sigh was feasible and without increased risk

    Dynamic imaging for dynamic lung events

    No full text
    Aï»żBSTRACT: Cities can be severely affected by climate change. Hence, many of them have started to develop climate adaptation strategies or implement measures to help prepare for the challenges it will present. This study aims to provide an overview of climate adaptation in 104 German cities. While existing studies on adaptation tracking rely heavily on self-reported data or the mere existence of adaptation plans, we applied the broader concept of adaptation readiness, considering five factors and a total of twelve different indicators, when making our assessments. We clustered the cities depending on the contribution of these factors to the overall adaptation readiness index and grouped them according to their total score and cluster affiliations. This resulted in us identifying four groups of cities. First, a pioneering group comprises twelve (mainly big) cities with more than 500,000 inhabitants, which showed high scores for all five factors of adaptation readiness. Second, a set of 36 active cities, which follow different strategies on how to deal with climate adaptation. Third, a group of 28 cities showed considerably less activity toward climate adaptation, while a fourth set of 28 mostly small cities (with between 50,000 and 99,999 inhabitants) scored the lowest. We consider this final group to be pursuing a ‘wait-and-see’ approach. Since the city size correlates with the adaptation readiness index, we recommend policymakers introduce funding schemes that focus on supporting small cities, to help them prepare for the impact of a changing climate

    Recruitable alveolar collapse and overdistension during laparoscopic gynecological surgery and mechanical ventilation: a prospective clinical study

    Get PDF
    Background Laparoscopic surgery in Trendelenburg position may impede mechanical ventilation (MV) due to positioning and high intra-abdominal pressure. We sought to identify the positive end-expiratory pressure (PEEP) levels necessary to counteract atelectasis formation ("Open-Lung-PEEP") and to provide an equal balance between overdistension and alveolar collapse ("Best-Compromise-PEEP"). Methods Results In supine position, the median Open-Lung-PEEP was 12 (8-14) cmH2O with 8.7 (4.7-15.5)% of overdistension and 1.7 (0.4-2.2)% of collapse. Best-Compromise-PEEP was 8 (6.5-10) cmH2O with 4.2 (2.4-7.2)% of overdistension and 5.1 (3.9-6.5)% of collapse. In Trendelenburg position with capnoperitoneum, Open-Lung-PEEP was 18 (18-20) cmH 2 O (p < 0.0001 vs supine position) with 1.8 (0.5-3.9)% of overdistension and 0 (0-1.2)% of collapse and Best-Compromise-PEEP was 18 (16-20) cmH2O (p < 0.0001 vs supine position) with 1.5 (0.7-3.0)% of overdistension and 0.2 (0-2.7)% of collapse. Open-Lung-PEEP and Best-Compromise-PEEP were positively correlated with body mass index during MV in supine position but not in Trendelenburg position. Conclusion The PEEP levels required for preventing alveolar collapse and for balancing collapse and overdistension in Trendelenburg position with capnoperitoneum were significantly higher than those required for achieving the same goals in supine position without capnoperitoneum. Even with high PEEP levels, alveolar overdistension was negligible during MV in Trendelenburg position with capnoperitoneum. Trial registration This study was prospectively registered at German Clinical Trials registry (DRKS00016974)

    Continuous Production of Lipids with <i>Microchloropsis salina</i> in Open Thin-Layer Cascade Photobioreactors on a Pilot Scale

    No full text
    Studies on microalgal lipid production as a sustainable feedstock for biofuels and chemicals are scarce, particularly those on applying open thin-layer cascade (TLC) photobioreactors under dynamic diurnal conditions. Continuous lipid production with Microchloropsis salina was studied in scalable TLC photobioreactors at 50 m2 pilot scale, applying a physically simulated Mediterranean summer climate. A cascade of two serially connected TLC reactors was applied, promoting biomass growth under nutrient-replete conditions in the first reactor, while inducing the accumulation of lipids via nitrogen limitation in the second reactor. Up to 4.1 g L−1 of lipids were continuously produced at productivities of up to 0.27 g L−1 d−1 (1.8 g m2 d−1) at a mean hydraulic residence time of 2.5 d in the first reactor and 20 d in the second reactor. Coupling mass balances with the kinetics of microalgal growth and lipid formation enabled the simulation of phototrophic process performances of M. salina in TLC reactors in batch and continuous operation at the climate conditions studied. This study demonstrates the scalability of continuous microalgal lipid production in TLC reactors with M. salina and provides a TLC reactor model for the realistic simulation of microalgae lipid production processes after re-identification of the model parameters if other microalgae and/or varying climate conditions are applied
    • 

    corecore