2,729 research outputs found

    Interacting dark energy in f(R)f(R) gravity

    Get PDF
    The field equations in f(R)f(R) gravity derived from the Palatini variational principle and formulated in the Einstein conformal frame yield a cosmological term which varies with time. Moreover, they break the conservation of the energy--momentum tensor for matter, generating the interaction between matter and dark energy. Unlike phenomenological models of interacting dark energy, f(R)f(R) gravity derives such an interaction from a covariant Lagrangian which is a function of a relativistically invariant quantity (the curvature scalar RR). We derive the expressions for the quantities describing this interaction in terms of an arbitrary function f(R)f(R), and examine how the simplest phenomenological models of a variable cosmological constant are related to f(R)f(R) gravity. Particularly, we show that Λc2=H2(1−2q)\Lambda c^2=H^2(1-2q) for a flat, homogeneous and isotropic, pressureless universe. For the Lagrangian of form R−1/RR-1/R, which is the simplest way of introducing current cosmic acceleration in f(R)f(R) gravity, the predicted matter--dark energy interaction rate changes significantly in time, and its current value is relatively weak (on the order of 1% of H0H_0), in agreement with astronomical observations.Comment: 8 pages; published versio

    Restoring Time Dependence into Quantum Cosmology

    Full text link
    Mini superspace cosmology treats the scale factor a(t)a(t), the lapse function n(t)n(t), and an optional dilation field ϕ(t)\phi(t) as canonical variables. While pre-fixing n(t)n(t) means losing the Hamiltonian constraint, pre-fixing a(t)a(t) is serendipitously harmless at this level. This suggests an alternative to the Hartle-Hawking approach, where the pre-fixed a(t)a(t) and its derivatives are treated as explicit functions of time, leaving n(t)n(t) and a now mandatory ϕ(t)\phi(t) to serve as canonical variables. The naive gauge pre-fix a(t)=consta(t)=const is clearly forbidden, causing evolution to freeze altogether, so pre-fixing the scale factor, say a(t)=ta(t)=t, necessarily introduces explicit time dependence into the Lagrangian. Invoking Dirac's prescription for dealing with constraints, we construct the corresponding mini superspace time dependent total Hamiltonian, and calculate the Dirac brackets, characterized by {n,ϕ}D≠0\{n,\phi\}_D\neq 0, which are promoted to commutation relations in the quantum theory.Comment: Honorable Mentioned essay - Gravity Research Foundation 201

    Dirac Quantization of the Pais-Uhlenbeck Fourth Order Oscillator

    Full text link
    As a model, the Pais-Uhlenbeck fourth order oscillator with equation of motion d4q/dt4+(ω12+ω22)d2q/dt2+ω12ω22q=0d^4q/dt^4+(\omega_1^2+\omega_2^2)d^2q/dt^2 +\omega_1^2\omega_2^2 q=0 is a quantum-mechanical prototype of a field theory containing both second and fourth order derivative terms. With its dynamical degrees of freedom obeying constraints due to the presence of higher order time derivatives, the model cannot be quantized canonically. We thus quantize it using the method of Dirac constraints to construct the correct quantum-mechanical Hamiltonian for the system, and find that the Hamiltonian diagonalizes in the positive and negative norm states that are characteristic of higher derivative field theories. However, we also find that the oscillator commutation relations become singular in the ω1→ω2\omega_1 \to \omega_2 limit, a limit which corresponds to a prototype of a pure fourth order theory. Thus the particle content of the ω1=ω2\omega_1 =\omega_2 theory cannot be inferred from that of the ω1≠ω2\omega_1 \neq \omega_2 theory; and in fact in the ω1→ω2\omega_1 \to \omega_2 limit we find that all of the ω1≠ω2\omega_1 \neq \omega_2 negative norm states move off shell, with the spectrum of asymptotic in and out states of the equal frequency theory being found to be completely devoid of states with either negative energy or negative norm. As a byproduct of our work we find a Pais-Uhlenbeck analog of the zero energy theorem of Boulware, Horowitz and Strominger, and show how in the equal frequency Pais-Uhlenbeck theory the theorem can be transformed into a positive energy theorem instead.Comment: RevTeX4, 20 pages. Final version, to appear in Phys. Rev.

    On the Implementation of Constraints through Projection Operators

    Get PDF
    Quantum constraints of the type Q \psi = 0 can be straightforwardly implemented in cases where Q is a self-adjoint operator for which zero is an eigenvalue. In that case, the physical Hilbert space is obtained by projecting onto the kernel of Q, i.e. H_phys = ker(Q) = ker(Q*). It is, however, nontrivial to identify and project onto H_phys when zero is not in the point spectrum but instead is in the continuous spectrum of Q, because in this case the kernel of Q is empty. Here, we observe that the topology of the underlying Hilbert space can be harmlessly modified in the direction perpendicular to the constraint surface in such a way that Q becomes non-self-adjoint. This procedure then allows us to conveniently obtain H_phys as the proper Hilbert subspace H_phys = ker(Q*), on which one can project as usual. In the simplest case, the necessary change of topology amounts to passing from an L^2 Hilbert space to a Sobolev space.Comment: 22 pages, LaTe

    On Hamiltonian formulation of the Einstein-Hilbert action in two dimensions

    Full text link
    It is shown that the well-known triviality of the Einstein field equations in two dimensions is not a sufficient condition for the Einstein-Hilbert action to be a total divergence, if the general covariance is to be preserved, that is, a coordinate system is not fixed. Consequently, a Hamiltonian formulation is possible without any modification of the two dimensional Einstein-Hilbert action. We find the resulting constraints and the corresponding gauge transfromations of the metric tensor.Comment: 9 page

    Very Light Cosmological Scalar Fields from a Tiny Cosmological Constant

    Full text link
    We discuss a mechanism which generates a mass term for a scalar field in an expanding universe. The mass of this field turns out to be generated by the cosmological constant and can be naturally small if protected by a conformal symmetry which is however broken in the gravitational sector. The mass is comparable today to the Hubble time. This scalar field could thus impact our universe today and for example be at the origin of a time variation of the couplings and masses of the parameters of the standard model.Comment: 11 page

    Dynamical Generation of Spacetime Signature by Massive Quantum Fields on a Topologically Non-Trivial Background

    Full text link
    The effective potential for a dynamical Wick field (dynamical signature) induced by the quantum effects of massive fields on a topologically non-trivial DD dimensional background is considered. It is shown that when the radius of the compactified dimension is very small compared with Λ1/2\Lambda^{1/2} (where Λ\Lambda is a proper-time cutoff), a flat metric with Lorentzian signature is preferred on R4×S1{\bf R}^4 \times {\bf S}^1. When the compactification radius becomes larger a careful analysis of the 1-loop effective potential indicates that a Lorentzian signature is preferred in both D=6D=6 and D=4D=4 and that these results are relatively stable under metrical perturbations

    Strongly coupled plasma with electric and magnetic charges

    Full text link
    A number of theoretical and lattice results lead us to believe that Quark-Gluon Plasma not too far from TcT_c contains not only electrically charged quasiparticles -- quarks and gluons -- but magnetically charged ones -- monopoles and dyons -- as well. Although binary systems like charge-monopole and charge-dyon were considered in details before in both classical and quantum settings, it is the first study of coexisting electric and magnetic particles in many-body context. We perform Molecular Dynamics study of strongly coupled plasmas with ∼1000\sim 1000 particles and different fraction of magnetic charges. Correlation functions and Kubo formulae lead to such transport properties as diffusion constant, shear viscosity and electric conductivity: we compare the first two with empirical data from RHIC experiments as well as results from AdS/CFT correspondence. We also study a number of collective excitations in these systems.Comment: 2nd version, 22 pages, 32 figures: two important new figures have been included to compare our results with RHIC experiments and AdS/CFT results; a few new references and comments are added as wel

    Common Space of Spin and Spacetime

    Full text link
    Given Lorentz invariance in Minkowski spacetime, we investigate a common space of spin and spacetime. To obtain a finite spinor representation of the non-compact homogeneous Lorentz group including Lorentz boosts, we introduce an indefinite inner product space (IIPS) with a normalized positive probability. In this IIPS, the common momentum and common variable of a massive fermion turn out to be ``doubly strict plus-operators''. Due to this nice property, it is straightforward to show an uncertainty relation between fermion mass and proper time. Also in IIPS, the newly-defined Lagrangian operators are self-adjoint, and the fermion field equations are derivable from the Lagrangians. Finally, the nonlinear QED equations and Lagrangians are presented as an example.Comment: 17 pages, a reference corrected, final version published on Foundations of Physics Letters in June of 2005, as a personal tribute to Einstein and Dira
    • …
    corecore