10 research outputs found

    Towards better performances for a novel rooftop solar PV system

    Get PDF
    Solar photovoltaic (PV) systems are used worldwide for clean production of electricity. Photovoltaic simulation tool serve to predict the amount of energy generated by the PV solar array structure. This paper presents the photovoltaic system installed on the rooftop of the G.D. Naidu Block at Vellore Institute of Technology (Vellore, India). A novel PV plant design is developed here in order to improve the energetic efficiency of an existing PV system. The effectiveness of proposed design is evaluated over an entire year using the PVsyst v6.70 software, which works on accurate plant specifications. For this purpose, Metronome 7.1 weather data sets of ambient temperature and radiation from PVsyst database are used for the investigation. The cost of the proposed PV system and the required payback period are analyzed as well. Simulation results demonstrate the superiority of the proposed PV system design over the existing one in terms of the amount of electric energy injected in the grid, energy conversion efficiency, and reductions in CO2/SO2/NO emissions. Performance ratio of proposed design (Design 2) is 0.791 whereas the existing design (Design 1) is only 0.704. Design 2 provides 40 MWh more energy to grid than Design 1 due to reducing shading losses. The daily system energy generated for Design 2 is maximum (in particular, 26-29% higher than for Design 1) between March and May, when the sun is brightest and directly above our head. Shading analysis carried out for both designs revealed that the existing Design 1 has more shading loss while the proposed Design 2 may reduce this loss by about 11-13%, which results in a better efficiency of energy production. The article also documents significant emission reduction and cost analysis calculation for the proposed Design 2

    On the replacement of steel by NITINOL as coupling agent in automobile shaft

    Get PDF
    Automobile couplings generally fail due to excessive misalignment in shafts and torque overload which ultimately generates vibration in the assembly. These vibrations weaken the coupling structure and ultimately get transmitted to the shaft leading to fatigue failure. Additionally, the complexity in the design of standard coupling is related to lower durability. In this system, when the radial space is larger it trigger a bulkier transmission. Shape memory alloy such as NITINOL is a special class of smart material that possesses super-elasticity which means it can retain deformation of about 8%. This material has a high degree of strength, greater elastic and shear modulus than existing coupling materials such as steel, and have unique vibration damping features. Coupling made of NITINOL is simple in design and requires lesser space with minimal maintenance. They provide higher durability and are much reliable in operation over a wide range of temperatures. This paper aims to review the NITINOL material used in coupling technology industries and the parameters governing its shape memory effect. The knowledge gathered from this work enable to further extend the technological contribution of NiTi coupling at large scale production in the automobile sector with direct effect on longer life for the transmission system

    Performance of heat transfer mechanism in nucleate pool boiling -a relative approach of contribution to various heat transfer components

    Get PDF
    Nucleate pool steaming is an effective mode of transfer of heat that helps to reduce the use of fossil fuels and thus reduce pollution. Transfer of heat in nucleate pool steaming is examined to occur through the combination of natural convection, enhanced latent heat and convection transport. At the intermediate heat flux range, all three components play a principal character. In the elevated flux of heat area as the heat flux increases the enhanced convection contribution decreases while latent heat transport contribution has been found to increase considerably. In this study, we attempt to develop a heat transfer relationship for the coefficient of transfer of heat and suggested based on the relative benefactions of three components to the boiling flux of heat. The current work stressed the absolute motion of warmth guaranteeing from the summation of each of the three segments of regular convection, upgraded convection and idle warmth transport for water and methanol with round mathematical formed. The hypotheses of air pocket development in nucleate pool bubbling hypothesize for a significant bit of warmth move to the air pocket happens by conduction through a fluid microlayer framed on the warmed surface has been thought of. The maximum deviation of error between the present analytical and experimental one for water, methanol, ethanol and benzene is 6.89%, 5.24%, 5.64% and 6.21% respectively. The highest divergence in the middle of the forecasted data and different (analytical and investigational) outcomes is found to be ±2.54. Results from many other investigators have also been compared for the better visualization of heat transfer correlations to the present one. The highest divergence in the middle of the forecasted data and investigational one for Nusselt number is observed to be ±3.27 along with the present analytical ones.https://http//www.elsevier.com/locate/csiteam2022Mechanical and Aeronautical Engineerin

    Current global scenario of sputtered deposited NiTi smart systems

    Get PDF
    This review provides details of the global scenario on the recent development and application of NiTi smart metal shape memory alloys (SMA). It mainly focuses on the dc/rf magnetron sputtering fabrication technology of nitinol thin film, which is a prominent structural material for many miniaturised systems. The sputtering parameters and their influence on the smart mechanism of the NiTi thin film has highlighted. The application of NiTi SMA at industrial scale from aviation industries to medical industries was discussed. The raised challenges within various applications were addressed, discussed and we have proposed possible way to overcome these limitations

    Influence of β-phase stability in elemental blended Ti-Mo and Ti-Mo-Zr alloys

    Get PDF
    This paper investigated the improvement of mechanical properties for one of the most used biomaterials, titanium-based alloy. To improve its mechanical properties, molybdenum was chosen to be added to Ti and Ti-Zr alloys through a mechanical blending process. After homogenization of Ti (12, 15) Mo and Ti (12, 15) Mo-6Zr, the compaction pressure and sintering temperature were varied to create pellets. Characterization has been done using scanning electron microscopy (SEM), X-ray diffraction (XRD), Vickers’s hardness, Archimedes test and ultrasonic method, and 3-point bending test. Micrograph of each pellet revealed the influence of Mo content that plays a prominent role in the variation of microstructure in the alloys Ti-Mo and Ti-Zr-Mo. The porosity and density were also influenced by changing the β-phase. EBSD analysis shows the increase in β-phase with the addition of Zr. The overall results indicated that the percentage of β-phase greatly affects the mechanical properties for the specimens

    Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review

    No full text
    Over the last few years, there has been a growing interest in the study of lightweight composite materials. Due to their tailorable properties and unique characteristics (high strength, flexibility and stiffness), glass (GFs) and carbon (CFs) fibers are widely used in the production of advanced polymer matrix composites. Glass Fiber-Reinforced Polymer (GFRP) and Carbon Fiber-Reinforced Polymer (CFRP) composites have been developed by different fabrication methods and are extensively used for diverse engineering applications. A considerable amount of research papers have been published on GFRP and CFRP composites, but most of them focused on particular aspects. Therefore, in this review paper, a detailed classification of the existing types of GFs and CFs, highlighting their basic properties, is presented. Further, the oldest to the newest manufacturing techniques of GFRP and CFRP composites have been collected and described in detail. Furthermore, advantages, limitations and future trends of manufacturing methodologies are emphasized. The main properties (mechanical, vibrational, environmental, tribological and thermal) of GFRP and CFRP composites were summarized and documented with results from the literature. Finally, applications and future research directions of FRP composites are addressed. The database presented herein enables a comprehensive understanding of the GFRP and CFRP composites’ behavior and it can serve as a basis for developing models for predicting their behavior

    Free vibration of FG-GPLRC conical panel on elastic foundation

    No full text
    Present research is aimed to investigate the free vibration behavior of functionally graded (FG) nanocomposite conical panel reinforced by graphene platelets (GPLs) on the elastic foundation. Winkler-Pasternak elastic foundation surrounds the mentioned shell. For each ply, graphaene platelets are randomly oriented and uniformly dispersed in an isotropic matrix. It is assumed that the Volume fraction of GPLs reainforcement could be different from layer to layer according to a functionally graded pattern. The effective elastic modulus of the conical panel is estimated according to the modified Halpin-Tsai rule in this manuscript. Cone is modeled based on the first order shear deformation theory (FSDT). Hamilton's principle and generalized differential quadrature (GDQ) approach are also used to derive and discrete the equations of motion. Some evaluations are provided to compare the natural frequencies between current study and some experimental and theoretical investigations. After validation of the accuracy of the present formulation and method, natural frequencies and the corresponding mode shapes of FG-GPLRC conical panel are developed for different parameters such as boundary conditions, GPLs volume fraction, types of functionally graded and elastic foundation coefficients. Copyright 2020 Techno-Press, Ltd.This research is founded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 107.99-2019.02.Scopu

    Water-Based Lubricants: Development, Properties, and Performances

    No full text
    Water-based lubricants (WBLs) have been at the forefront of recent research, due to the abundant availability of water at a low cost. However, in metallic tribo-systems, WBLs often exhibit poor performance compared to petroleum-based lubricants. Research and development indicate that nano-additives improve the lubrication performance of water. Some of these additives could be categorized as solid nanoparticles, ionic liquids, and bio-based oils. These additives improve the tribological properties and help to reduce friction, wear, and corrosion. This review explored different water-based lubricant additives and summarized their properties and performances. Viscosity, density, wettability, and solubility are discussed to determine the viability of using water-based nano-lubricants compared to petroleum-based lubricants for reducing friction and wear in machining. Water-based liquid lubricants also have environmental benefits over petroleum-based lubricants. Further research is needed to understand and optimize water-based lubrication for tribological systems completely

    Corrosion behavior of LENS deposited CoCrMo alloy using Bayesian regularization-based artificial neural network (BRANN)

    No full text
    The well-known fact of metallurgy is that the lifetime of a metal structure depends on the material's corrosion rate. Therefore, applying an appropriate prediction of corrosion process for the manufactured metals or alloys trigger an extended life of the product. At present, the current prediction models for additive manufactured alloys are either complicated or built on a restricted basis towards corrosion depletion. This paper presents a novel approach to estimate the corrosion rate and corrosion potential prediction by considering significant major parameters such as solution time, aging time, aging temperature, and corrosion test time. The Laser Engineered Net Shaping (LENS), which is an additive manufacturing process used in the manufacturing of health care equipment, was investigated in the present research. All the accumulated information used to manufacture the LENS-based Cobalt-Chromium-Molybdenum (CoCrMo) alloy was considered from previous literature. They enabled to create a robust Bayesian Regularization (BR)-based Artificial Neural Network (ANN) in order to predict with accuracy the material best corrosion properties. The achieved data were validated by investigating its experimental behavior. It was found a very good agreement between the predicted values generated with the BRANN model and experimental values. The robustness of the proposed approach allows to implement the manufactured materials successfully in the biomedical implants
    corecore