21 research outputs found

    Räumliche Aspekte von Transformationsproblemen aus systemtheoretischer Perspektive

    Get PDF
    Der mit dem Topos "Transformation von Wirtschafts- und Gesellschaftssystemen" axiomatisch angenommene Unvereinbarkeit sozialistischer und marktwirtschaftlicher Strukturen ist aus raumwissenschaftlicher Sicht nicht nachvollziehbar. Zum einen gibt es in Wirtschaftsgeographie und Infrastrukturtheorie eine ganze Reihe von Gemeinsamkeiten und Berührungspunkten, die man für den konstruktiven Systemumbau nutzen kann. Zum andern benötigt der Umbau selbst eine räumliche Infrastruktur. Und zum dritten brauchen Wissenschaftler und Planer Lösungskonzepte und Instrumentarien, mit denen sie räumliche Koordinations- und Steuerungsprobleme lösen können, die während der immer wieder verlängerten Transformationsphase auftreten. Die Art und Weise, wie räumliche Kalküle in den Transformationsablauf (West-Ost) eingebaut und umgesetzt werden, ist in vieler Hinsicht entscheidend für den Gesamtprozess: Der Erfolg beim Aufbau einer adressräumlichen Infrastruktur bestimmt, ob Unternehmen miteinander in Wettbewerb treten können oder nicht. Ergänzungsräumliche Logistik bestimmt darüber, welche Regionen als Beschaffungs-, Produktions- und/oder Absatzgebiete infrage kommen. Administrativräumliche Disaggregation entscheidet über die Wirksamkeit und Durchsetzbarkeit politisch-juristischer Regulierung und Sanktionen für marktdestruktives Verhalten. Die politische Konstitution neuer Vaterländer kann nach außen hin als akzeptabel (Russland gegenüber Tschteschenien) oder inkompatibel (Serbien gegenüber Kosovo) rezipiert und entsprechend bekämpft werden. Der emotionale Rückzug vor der Undurchsichtigkeit von Transformationsprozessen auf Heimat und/oder Mesoregion kann marktwirtschaftsnah oder -fremd akzentuiert sein. Die Ergebnisse bisheriger Transformationsprozesse lassen vielerorts zu wünschen übrig. Die Organisationsvorteile und räumlichen Strategien westlicher Produzenten und Vermarkter bei der Angebotsdiffusion wurden unterschätzt. In vielen Branchen, vor allem in Ostdeutschland und in den GUS-Ländern, eskalierte ein Verdrängungswettbewerb, der die eigenen Volkswirtschaften in Peripherien für Westeuropa und Ostasien transformierte. Andererseits erwiesen sich einige wenige sowjetische monopolistische Ministerialkonzernstrukturen als weltmarktkongruent. Im Energie- und Rohstoffbereich braucht offenbar nicht allzu viel transformiert werden. Die Schwächung der staatlichen Verwaltung in den ärmeren Transformationsstaaten durch Auflagen internationaler Kreditgeber zur Verringerung der Staatsquoten hat sich in einer Zerstörung der Infrastruktur- und Sozialsysteme niedergeschlagen, so dass in der GUS große Bevölkerungsteile der Verelendung preisgegeben sind. Das ursprünglich ökonomisch rational angelegte Transformationskalkül ist längst durch Realpolitik kompromittiert und als Umsetzungsziel auf unabsehbare Zeiten verschoben worden. Die positiven Transformationseffekte (Transfer von Kapital, Arbeitskraft und politischer Macht - durch Destruktion der Gegenmächte in Osteuropa häufen sich in Westeuropa und den USA. Dort stützt der Transformationsimperativ für Osteuropa) die "Richtigkeit" und Überlegenheit des eigenen Systems. Um Transformation in Osteuropa überlebensfähig zu halten, wird sie vielerorts mit nationalistischem Gedankengut im Rahmen von "Vaterlands"-propaganda kultiviert (vgl. Abb. 7). Im Rahmen der wissenschaftliche Arbeit hat Transformation dazu beigetragen, dass wir heute mehr als je zuvor über sozialistische Realsysteme wissen. Im übrigen ist das Transformationskalkül weder als geschlossenes gesellschaftliches Zielsystem, was es immer sein wollte und nirgends wurde, noch als Problemselektor für die wissenschaftliche Arbeit tragbar. Man kann Steuerungsprobleme in postsozialistischen Ländern heute nicht mehr auf Sozialismus als Ganzes zurückführen. Man muss sie als "normale" makro-, meso- und mikroregionale Infrastruktur- und Koordinationsprobleme ernst nehmen und als solche bearbeiten - wie in anderen Ländern auch.The axiomatically assumed incompatibility of socialist and market economy structures in the expression "Transformation of Economic and Social Systems" is incomprehensible from a regional sciences point of view. Firstly, there are a whole series of similarities and tangential points in economic geography and infrastructure theory that can be used for constructive system transformation. Secondly, the transformation itself requires a regional infrastructure. Thirdly, scientists and planners need solution concepts and instruments for spatial coordination and control problems occurring during the extending transformation phase. The ways and means with which regional calculations are integrated and implemented in the course of transformation (West-East), are decisive in many ways for the overall process: the success in building up an address-regional infrastructure determines whether companies can compete or not. In addition, supplementary-regional logistics de termine which regions can act as procurement, production and/or sales areas. Administrative-regional disaggregation decides over the effectiveness and feasibility of political-legal regulations and sanctions for market -destructive behaviour. The political constitution of new fatherlands can be deemed outwardly acceptable (Russia towards Chechnya) or incompatible (Serbia towards Kosovo) and fought accordingly. The emotional withdrawal from the incomprehensibility of transformation processes and the return to homelands and/or mesoregions can be accentuated in a form which is whether friendly or unfriendly towards market economies. The results of previous transformation processes leave a lot to be desired in many areas. The organisation advantages and regional strategies of western producers and marketers in the diffusion of supply were underestimated. Crowding-out competition escalated in many branches, especially in Eastern Germany and the CIS states, which transformed the own national economies into peripheral sectors of Western Europe and Eastern Asia. Conversely, a few Soviet monopolist ministerial cartel structures proved themselves to be congruent to the world market. It is apparently unnecessary to change all too much in the energy and raw materials sectors. The weakening of state administration in the poor transformation states due to the conditions imposed by international credit lenders in order to reduce the government expenditure rate has been made manifest in the destruction of infrastructure and social systems, thus meaning that large parts of the population in CIS states live in a state of destitution. The original transformation calculation on a rational economic basis has long since been compromised by real policy and has been postponed indefinitely as a goal. The positive transformation effects (transfer of capital, labour and political power) through the destruction of opponents in Eastern Europe are becoming increasingly manifest in Western Europe and the USA. There, the transformation imperative for Eastern Europe supports the "rightness" and superiority of the own system. In order to keep the transformation process in Eastern Europe alive, it is cultivated in many places in conjunction with nationalist pride within a framework of "fatherland" propaganda (see Fig. 7). Within the framework of academic work, transformation has meant that we now know more than ever about real socialist systems. Further, the transformation calculation is neither tenable as a complete, social target system, which it always claimed, but never managed to be, nor as a problem selector for the academic work. Control problems in post-socialist states can no longer be traced back to socialism as a whole. They must be taken seriously as "normal" macro-, meso- and micro-regional infrastructure and coordination problems and dealt with accordingly - just like in other countries

    Catalytic DNAs That Harness Violet Light To Repair Thymine Dimers in a DNA Substrate

    No full text
    UV1C is an <i>in vitro</i> selected catalytic DNA that shows efficient photolyase activity, using light of <310 nm wavelength to photo-reactivate CPD thymine dimers within a substrate DNA. We show here that a minimal mutational strategy of substituting a guanine analogue, 6MI, for single guanine residues within UV1C extends the DNAzyme’s activity into the violet region of the spectrum. These 6MI point mutant DNAzymes fall into three distinct functional classes, which photo-reactivate the thymine dimer along different pathways. Cumulatively, they reveal the <i>modus operandi</i> of the original UV1C DNAzyme to be a surprisingly versatile one. The interchangeable properties of no less than six of the G→6MI point mutants highlight UV1C’s built-in functional flexibility, which may serve as a starting point for the creation of efficient, visible light-harnessing, photolyase DNAzymes for either the prophylaxis or therapy of UV damage to human skin

    Melting CD spectra of iCD-DNA as a function of temperature.

    No full text
    <p>CD spectra of iCD DNA generated from d(C<sub>2</sub>G<sub>4</sub>)<sub>7</sub>, measured as a function of temperature in lithium buffer.</p

    Effect of other G:C ratios on the formation of iCD-DNA.

    No full text
    <p>(a) Circular dichroism spectra of DNA repeats containing varying C:G ratios, independently incubated and diluted either in 150 mM 4-ethylmorpholine, pH 5.2 (<i>left</i>) or 150 mM lithium citrate, pH 5.2 (<i>right</i>); in all cases, given the different molecular weights of different oligonucleotides, the DNA mass was kept equal in each solution; (b) data, as above, but incubated and diluted only in 150 mM lithium citrate, pH 5.2.</p

    Native gel and DMS footprinting of iCD-DNA.

    No full text
    <p>(a) Native gel analysis of iCD-DNA formed from d(C<sub>2</sub>G<sub>4</sub>)<sub>7</sub>; “s” and “f” refer to the slow and fast-moving bands, respectively. (b) DMS-methylation protection data for the “s” and”f” iCD-DNA complexes formed by d(C<sub>2</sub>G<sub>4</sub>)<sub>7</sub>. The lane on the extreme shows a guanine ladder, representing the methylation pattern of unfolded d(C<sub>2</sub>G<sub>4</sub>)<sub>7</sub>. The numbers to the left of the gel indicate the C<sub>2</sub>G<sub>4</sub> tract number, starting from the 5’ end. “+” as in “f+” refers to DNA samples treated to DMS, followed by hot piperidine; “-”refers to DNA samples treated only with hot piperidine. (c) As in (b), except showing data from iCD-DNA from d(C<sub>2</sub>G<sub>4</sub>)<sub>4</sub>. Two independent loadings are shown to cover all four C<sub>2</sub>G<sub>4</sub> tracts present in this oligonucleotide.</p

    Effect of varying G:C ratios away from C<sub>2</sub>G<sub>4</sub> on the formation of iCD-DNA.

    No full text
    <p>(a-b) Circular dichroism spectra of DNA repeats containing varying C:G ratios, independently incubated and diluted either in 150 mM 4-ethylmorpholine, pH 5.2 (<i>left</i>) or 150 mM lithium citrate, pH 5.2 (<i>right</i>); in all cases, given the different molecular weights of different oligonucleotides, the DNA mass was kept equal in each solution.</p

    C<sub>2</sub>G<sub>4</sub> repeat-length dependence on the formation of iCD-DNA.

    No full text
    <p>CD spectra of d(C<sub>2</sub>G<sub>4</sub>)<sub>n</sub> (where n = 2–7), in 150 mM lithium citrate, pH 5.2, at DNA concentrations adjusted to ensure unvarying DNA mass from solution to solution. Each DNA was incubated at 700 μM concentration in 150 mM lithium citrate, pH 5.2, at 37°C for 14 hrs, following which it was diluted to ensure constant DNA mass into the same buffer as follows—“7”: 2.85 μM d(C<sub>2</sub>G<sub>4</sub>)<sub>7</sub>; “6”: 3.33 μM d(C<sub>2</sub>G<sub>4</sub>)<sub>6</sub>; “5”: 4.0 μM d(C<sub>2</sub>G<sub>4</sub>)<sub>5</sub>; “4”: 5.0 μM d(C<sub>2</sub>G<sub>4</sub>)<sub>4</sub>; “3”: 6.66 μM d(C<sub>2</sub>G<sub>4</sub>)<sub>3</sub>; and “2”: 10.0 μM d(C<sub>2</sub>G<sub>4</sub>)<sub>2</sub>.</p

    Comparison of iCD-DNA with Z DNA and Z-G4.

    No full text
    <p>Circular dichroism spectra of (C<sub>2</sub>G<sub>4</sub>)<sub>7</sub> in 150 mM potassium citrate, pH 5.2; (C<sub>2</sub>G<sub>4</sub>)<sub>7</sub> in 150 mM lithium citrate pH 5.2; a left-handed G-quadruplex (GQ) [ZG4: (T(GGT)<sub>4</sub>TG(TGG)<sub>3</sub>TGTT)] in TE (10mM Tris, 0.1mM EDTA, pH 7.0) plus 150 mM KCl; and a duplex Z-DNA [(CG)<sub>25</sub>] in TE plus 4.0 M NaCl.</p

    Investigation of the strand stoichiometries of the “f” and “s” products.

    No full text
    <p>Lane 1–3 show incubations with [DNA] = 700 μM and lanes 4–6 show incubations with [DNA] = 30 μM. Lanes 1 and 4 show incubations of d(C<sub>2</sub>G<sub>4</sub>)<sub>7</sub>; lanes 3 and 6 show incubations of d(C<sub>2</sub>G<sub>4</sub>)<sub>7</sub>T<sub>6</sub>; and, lanes 2 and 5 show incubations of equimolar mixes of d(C<sub>2</sub>G<sub>4</sub>)<sub>7</sub> and d(C<sub>2</sub>G<sub>4</sub>)<sub>7</sub>T<sub>6</sub>. The numbers shown to the left of the double-stranded ladder show the values of individual bands as base pairs.</p

    Formation of iCD-DNA.

    No full text
    <p>(a) Circular dichroism spectra of 20 μM d(C<sub>2</sub>G<sub>4</sub>)<sub>7</sub> in TE Buffer plus 150 mM LiCl, pH 7.4. 700 μM DNA in this buffer, at 37°C, was incubated for 14 hrs and for 5 days. CD spectra were taken shortly following dilution to 20 μM DNA, in the same buffer, and measured at 22°C. (b) Circular dichroism spectra of 20 μM d(C<sub>2</sub>G<sub>4</sub>)<sub>7</sub> in 150 mM lithium citrate buffer at different pH (5, 5.2, 5.4, 5.6, 6) as well as in TE buffer plus 150 mM LiCl (at pH 7.0 and 7.4). 700 μM DNA, in the above buffers, was incubated for 14 hrs at 37°C. CD spectra were taken shortly after dilution to 20 μM DNA, in the appropriate buffer, and measured at 22°C. (c) θ<sub>280</sub> from Fig 1B plotted as a function of pH.</p
    corecore