14 research outputs found

    HCV Proteins and Immunoglobulin Variable Gene (IgV) Subfamilies in HCV-Induced Type II Mixed Cryoglobulinemia: A Concurrent Pathogenetic Role

    Get PDF
    The association between hepatitis C virus (HCV) infection and type II mixed cryoglobulinemia (MCII) is well established, but the role played by distinct HCV proteins and by specific components of the anti-HCV humoral immune response remains to be clearly defined. It is widely accepted that HCV drives the expansion of few B-cell clones expressing a restricted pool of selected immunoglobulin variable (IgV) gene subfamilies frequently endowed with rheumatoid factor (RF) activity. Moreover, the same IgV subfamilies are frequently observed in HCV-transformed malignant B-cell clones occasionally complicating MCII. In this paper, we analyze both the humoral and viral counterparts at the basis of cryoglobulins production in HCV-induced MCII, with particular attention reserved to the single IgV subfamilies most frequently involved

    Divergent Trends of Anti-JCPyV Serum Reactivity and Neutralizing Activity in Multiple Sclerosis (MS) Patients during Treatment with Natalizumab

    Get PDF
    The association between natalizumab and progressive multifocal leukoencephalopathy (PML) is established, but a reliable clinical risk stratification flow-chart is lacking. New risk factors are needed, such as the possible role of the anti-JC polyomavirus (JCPyV) neutralizing antibody. In this pilot study, we analyzed this parameter during natalizumab treatment. Sequential sera of 38 multiple sclerosis patients during their first year of natalizumab treatment were collected, and grouped according to the number of infusions. For 11 patients, samples were also available after 24 infusions (T24), when progressive multifocal leukoencephalopathy (PML) risk is higher. The reactivity against VP1, the main JCPyV surface protein, and the anti-JCPyV neutralizing activity were evaluated. During the first year, a lack of correlation between anti-JCPyV antibody response and its neutralizing activity was observed: a significant decrease in anti-JCPyV antibody response was observed (p = 0.0039), not paralleled by a similar trend in the total anti-JCPyV neutralizing activity (p = 0.2239). This lack of correlation was even more evident at T24 when, notwithstanding a significant increase in the anti-JCPyV response (p = 0.0097), a further decrease of the neutralizing activity was observed (p = 0.0062). This is the first study evidencing, prospectively, the lack of correlation between the anti-JCPyV antibody response and its neutralizing activity during natalizumab treatment

    Anti-hepatitis C virus E2 (HCV/E2) glycoprotein monoclonal antibodies and neutralization interference

    No full text
    The suggested HCV escape mechanism consisting in the elicitation of antibody (Ab) subpopulations interfering with the neutralizing activity of other Abs has recently been questioned. In particular, it was originally reported that Abs directed against the 436-447 region (epitope II) of HCV/E2 glycoprotein may interfere with the neutralizing Abs directed against the 412-423 region (epitope I) involved in the binding to CD81. In this paper, we investigate on the molecular features of this phenomenon describing an anti-HCV/E2 monoclonal Ab (mAb) (e509) endowed with a weak neutralizing activity, and whose epitope is centered on epitope II. Interestingly, e509 influenced the potent neutralizing activity of AP33, one of the best characterized anti-HCV/E2 mAb, whereas it did not show any interfering activity against two other broadly neutralizing mAbs (e20 and e137), whose epitopes partially overlap with that of e509 and which possibly displace it from the antigen.These data may give a possible clue to interpret the conflicting studies published to date on the mechanism of interference, suggesting the existence of at least two groups of broadly neutralizing anti-HCV/E2 Abs: (i) those whose epitope is focused on the 412-423 CD81-binding region and whose activity may be hampered by other Abs directed against the 436-447 region, and (ii) those directed against CD81-binding regions but whose epitope contains also residues within the 436-447 region recognized by interfering mAbs, thus competing with them for binding. The conflicting results of previous studies may therefore depend on the relative amount of each of these two populations in the polyclonal preparations used. Overall, a better comprehension of this phenomenon may be of importance in the set up of novel mAb-based anti-HCV therapeutic strategie

    Neutralization activity and kinetics of two broad-range human monoclonal IgG1 derived from recombinant Fab fragments and directed against Hepatitis C Virus E2 glycoprotein

    No full text
    Hepatitis C virus (HCV) is the major cause of chronic liver disease worldwide. There is evidence that neutralizing anti-HCV antibodies may find potential applications in novel prophylactic and therapeutic strategies. This paper describes the very high neutralization activity and unique biological features of two broadly cross-reactive and cross-neutralizing anti-HCV human monoclonal IgG1 derived from human monoclonal recombinant Fab fragments

    Molecular characterization of the human neutralizing response against hepatitis C virus and its role in the prediction of the infection outcome

    No full text
    The hepatitis C virus (HCV) adopts several escape mechanisms and is able to evade the host immune response in the majority of patients. During primary infection, HCV is not cleared in 80% of cases resulting in chronic infection. The current treatment for HCV infection is mainly represented by the administration of a combined therapy (IFN-α, ribavirin) and by the use of new anti-viral drugs (protease inhibitors). Unfortunately, only 50% of the infected patients respond completely to these therapies. It has been demonstrated how a neutralizing antibody response is correlated with lower HCV titer in acute infection. Moreover, it is also demonstrated how a rapid induction of neutralizing antibodies can be correlated with the viral clearance. Under these purposes, results clear how neutralizing antibodies can be important for the HCV infection control. In addition, they can represent good candidates for passive immunotherapy. They also can be applied both in diagnosis, as useful tools for the evaluation of the presence of cross-neutralizing antibodies in patients sera, and in research studies to better understand the virus–host interplay, an aspect that can be crucial in predicting the infection clinical outcome. In this study, we characterized the synergistic neutralization of HCV by two broadly neutralizing human monoclonal antibodies directed against HCV/E2 glycoprotein, named e20 and e137

    Identification of a broadly cross-reacting and neutralizing human monoclonal antibody directed against the hepatitis C virus E2 protein

    No full text
    Identification of anti-hepatitis C virus (anti-HCV) human antibody clones with broad neutralizing activity is important for a better understanding of the interplay between the virus and host and for the design of an effective passive immunotherapy and an effective vaccine. We report the identification of a human monoclonal Fab (e137) able to bind the HCV E2 glycoprotein of all HCV genotypes but genotype 5. The results of antibody competition assays and testing the reactivity to alanine mutant E2 proteins confirmed that the e137 epitope includes residues (T416, W420, W529, G530, and D535) highly conserved across all HCV genotypes. Fab e137 neutralized HCV pseudoparticles bearing genotype 1a, 1b, and 4 E1-E2 proteins and to a lesser extent, genotype 2b. Fab e137 was also able to inhibit cell culture-grown HCV (genotype 2a). These data indicate that broadly cross-reacting and cross-neutralizing antibodies are generated during HCV infection

    Hepatitis C virus (HCV)-driven stimulation of subfamily-restricted natural IgM antibodies in mixed cryoglobulinemia

    No full text
    Hepatitis C virus (HCV) infection has been closely related to mixed cryoglobulinemia (MC). During HCV infection, cryoglobulins derive from the restricted expression of few germline genes as VH1-69, a subfamily highly represented in anti-HCV humoral response. Little is known about the self-reacting IgM component of the cryoprecipitate. In the present study, the IgM/K repertoire of an HCV-infected cryoglobulinemic patient was dissected by phage-display on well-characterized anti-HCV/E2 VH1-69-derived monoclonal IgG1/Κ Fab fragments cloned from the same patient. All selected IgM clones were shown to react with the anti-HCV/E2 antibodies belonging to VH1-69 subfamily. More than 60% of selected clones showed a bias in VH gene usage, restricted to two VH subfamilies frequently described in autoimmune manifestations (VH3-23; VH3-21). Moreover, all selected clones showed an high similarity (> 98.5%) to germline genes evidencing their natural origin. A possible hypothesis is that clones belonging to some subfamilies are naturally prone to react against other VH gene subfamilies, as VH 1-69. An antigen-driven stimulation of these subfamilies, and their overexpression as in HCV infection, could lead to a breaking of humoral homeostatic balance exposing the patients to the risk of developing autoimmune disorders
    corecore