61 research outputs found

    Metastatic Group 3 Medulloblastoma in a Patient With Tuberous Sclerosis Complex: Case Description and Molecular Characterization of the Tumor

    Get PDF
    Medulloblastoma is the most common pediatric brain tumor. We describe a child with tuberous sclerosis complex that developed a Group 3, myc overexpressed, metastatic medulloblastoma (MB). Considering the high risk of treatment-induced malignancies, a tailored therapy, omitting radiation, was given. Based on the evidence of mammalian target of rapamycin mTORC, mTOR Complex; RAS, Rat sarcoma; RAF, rapidly accelerated fibrosarcoma (mTOR) pathway activation in the tumor, targeted therapy was applied resulting in complete remission of disease. Although the PI3K/AKT/mTOR signaling pathway plays a role in MB, we did not find TSC1/TSC2 (TSC, tuberous sclerosis complex) mutation in our patient. We speculate that a different pathway resulting in mTOR activation is the basis of both TSC and MB in this child; H&E, haematoxilin and eosin; Gd, gadolinium

    Anomalous vascularization in a Wnt medulloblastoma: A case report

    Get PDF
    BACKGROUND: Medulloblastoma is the most common malignant brain tumor in children. To date only few cases of medulloblastoma with hemorrhages have been reported in the literature. Although some studies speculate on the pathogenesis of this anomalous increased vascularization in medulloblastoma, the specific mechanism is still far from clearly understood. A correlation between molecular medulloblastoma subgroups and hemorrhagic features has not been reported, although recent preliminary studies described that WNT-subtype tumors display increased vascularization and hemorrhaging. CASE PRESENTATION: Herein, we describe a child with a Wnt-medulloblastoma presenting as cerebellar-vermian hemorrhagic lesion. Brain magnetic resonance imaging (MRI) showed the presence of a midline posterior fossa mass with a cystic hemorrhagic component. The differential diagnosis based on imaging included cavernous hemangioma, arteriovenous malformation and traumatic lesion. At surgery, the tumor appeared richly vascularized as documented by the preoperative angiography. CONCLUSIONS: The case we present showed that Wnt medulloblastoma may be associated with anomalous vascularization. Further studies are needed to elucidate if there is a link between the hypervascularization and the Wnt/β-catenin signaling activation and if this abnormal vasculature might influence drug penetration contributing to good prognosis of this medulloblastoma subgroup

    Paediatric-type diffuse high-grade gliomas in the 5th CNS WHO Classification

    Get PDF
    As a relevant element of novelty, the fifth CNS WHO Classification highlights the distinctive pathobiology underlying gliomas arising primarily in children by recognizing for the first time the families of paediatric-type diffuse gliomas, both high-grade and low-grade. This review will focus on the family of paediatric-type diffuse high-grade gliomas, which includes four tumour types: 1) Diffuse midline glioma H3 K27-altered; 2) Diffuse hemispheric glioma H3 G34-mutant; 3) Diffuse paediatric-type high-grade glioma H3-wildtype and IDH-wildtype; and 4) Infant-type hemispheric glioma. The essential and desirable diagnostic criteria as well as the entities entering in the differential will be discussed for each tumour type. A special focus will be given on the issues encountered in the daily practice, especially regarding the diagnosis of the diffuse paediatric-type high-grade glioma H3-wildtype and IDH-wildtype. The advantages and the limits of the multiple molecular tests which may be utilised to define the entities of this tumour family will be evaluated in each diagnostic context

    IDO1 involvement in mTOR pathway: A molecular mechanism of resistance to mTOR targeting in medulloblastoma

    Get PDF
    Medulloblastoma (MB) is the most common malignant brain tumor in children. Despite therapeutic advancements, high-risk groups still present significant mortality. A deeper knowledge of the signaling pathways contributing to MB formation and aggressiveness would help develop new successful therapies. The target of rapamycin, mTOR signaling, is known to be involved in MB and is already targetable in the clinical setting. Furthermore, mTOR is a master metabolic regulator able to control cell growth versus autophagy decisions in conditions of amino-acid deprivation that can be due to IDO1 enzymatic activity. IDO1 has been also implicated in the regulation of inflammation, as well as of T cell-mediated immune responses, in a variety of pathological conditions, including brain tumors. In particular, IDO1 induces expansion of regulatory T-cells (Treg), preventing immune response against tumor cells. Analysis of 27 MB tissue specimens for the expression of both mTOR and IDO1 showed their widespread expression in all samples. Testing their cooperation in vitro, a significant involvement of IDO1 in mTOR immunogenic pathway was found, able to counteract the aim of rapamycin treatment. In MB cell lines, inhibition of mTOR strongly induced IDO1 expression and activity, corroborating its ability to recruit Treg cells in the tumor microenvironment. The mTOR/IDO1 cross talk was found to be strictly specific of MB cells. We demonstrated that mTOR pathway cross talks with IDO1 pathway to promote MB immune escape, possibly contributing to failure of mTOR- targeted therapy

    Role of DNA Methylation Profile in Diagnosing Astroblastoma: A Case Report and Literature Review

    Get PDF
    Astroblastoma is a rare tumor of the central nervous system (CNS) with uncertain clinical behavior. Recently, DNA methylation profiling has been shown to provide a highly robust and reproducible approach for the classification of all CNS tumors across different age groups. By using DNA methylation profiling, a subset of CNS high-grade tumors with astroblastoma-like morphology characterized by the meningioma 1 gene (MN1) rearrangements, has been identified; they were termed “CNS high-grade neuroepithelial tumors with MN1 alteration” (CNS-HGNET-MN1). Here, we describe a case of CNS-HGNET-MN1 diagnosed by DNA methylation profiling, using Illumina Infinium HumanMethylationEPIC BeadChip (EPIC), that offers the opportunity to conduct a brief literature review. The patient presented with an episode of partial seizures involving the right hemisoma. A gross total resection was performed. No other treatment was proposed in light of the histological and molecular findings. After 21 months, the patient is disease-free in good clinical conditions. Also in view of this case, we recommend DNA-methylation profiling as an important tool for diagnosis and more effective patient stratification and management

    Multisystem involvement, defective lysosomes, and impaired autophagy in a novel rat model of Nephropathic Cystinosis

    Full text link
    Recessive mutations in the CTNS gene encoding the lysosomal transporter cystinosin cause cystinosis, a lysosomal storage disease leading to kidney failure and multisystem manifestations. A Ctns knock-out mouse model recapitulates features of cystinosis, but the delayed onset of kidney manifestations, phenotype variability, and strain effects limit its use for mechanistic and drug development studies. To provide a better model for cystinosis, we generated a Ctns knock-out rat model using CRISPR/Cas9 technology. The Ctns-/- rats display progressive cystine accumulation and crystal formation in multiple tissues including kidney, liver and thyroid. They show an early onset and progressive loss of urinary solutes, indicating generalized proximal tubule dysfunction, with development of typical swan-neck lesions, tubulointerstitial fibrosis and kidney failure, and decreased survival. The Ctns-/- rats also present crystals in the cornea, and bone and liver defects, like in patients. Mechanistically, the loss of cystinosin induces a phenotype switch associating abnormal proliferation and dedifferentiation, loss of apical receptors and transporters, and defective lysosomal activity and autophagy in the cells. Primary cultures of proximal tubule cells derived from the Ctns-/- rat kidneys confirmed the key changes caused by cystine overload, including reduced endocytic uptake, increased proliferation and defective lysosomal dynamics and autophagy. The novel Ctns-/- rat model and derived proximal tubule cell system provide invaluable tools to investigate the pathogenesis of cystinosis and to accelerate drug discovery

    Vemurafenib Treatment of Pleomorphic Xanthoastrocytoma in a Child With Down Syndrome

    Get PDF
    Brain tumors are the most common solid neoplasms of childhood, but they are very rarely reported in children with Down Syndrome (DS), who develop more commonly different types of malignancies. In particular, we hereby report the case of an 8-years-old child with DS that presented to our attention for neurological and endocrinological issues. Brain imaging revealed the presence of a mass that was partially resected revealing a histological diagnosis of Pleomorphic Xanthoastrocytoma (PXA), a rare WHO grade II tumor extending from the diencephalic region into the surrounding brain tissue. These tumors can harbor the BRAF mutation p.V600E, targetable by the specific inhibitor Vemurafenib. After confirming the presence of the mutation in the tumor, the patient was treated with Vemurafenib. The treatment proved to be effective, leading to a partial response and a stabilization of the disease. Usually, in patients with DS a reduction of the dose of chemotherapeutic drugs is necessary. Vemurafenib was instead well-tolerated as the only observed adverse effect was grade I skin toxicity. This is, to our knowledge, the first case of a PXA reported in a child with DS and the first DS patient treated with Vemurafenib

    Direct Involvement of Cranial Nerve V at Diagnosis in Patients With Diffuse Intrinsic Pontine Glioma: A Potential Magnetic Resonance Predictor of Short-Term Survival

    Get PDF
    Background: Diffuse intrinsic pontine glioma (DIPG) has a dismal prognosis. Magnetic resonance imaging (MRI) remains the gold standard for non-invasive DIPG diagnosis. MRI features have been tested as surrogate biomarkers. We investigated the direct involvement of cranial nerve V (CN V) in DIPG at diagnosis and its utility as predictor of poor overall survival.Materials and Methods: We examined MRI scans of 35 consecutive patients with radiological diagnosis of DIPG. Direct involvement of CN V was assessed on the diagnostic scans. Differences in overall survival (OS) and time to progression (TTP) were analyzed for involvement of CN V, sex, age, tumor size, ring enhancement, and treatment regimen. Correlations between involvement of CN V and disease dissemination, magnet strength and slice thickness were analyzed. Statistical analyses included Kaplan-Meier curves, log-rank test and Spearman's Rho.Results: After excluding six long-term survivors, 29 patients were examined (15 M, 14 F). Four patients presented direct involvement of CN V. Histological data were available in 12 patients. Median OS was 11 months (range 3–23 months). Significant differences in OS were found for direct involvement of CN V (median OS: 7 months, 95% CI 1.1–12.9 months for involvement of CN V vs. 13 months, 95% CI 10.2–15.7 for lack of involvement of CN V, respectively, p < 0.049). Significant differences in TTP were found for the two treatment regimens (median TTP: 4 months, 95% CI 2.6–5.3 vs. 7 months, 95% CI 5.9–8.1, respectively, p < 0.027). No significant correlation was found between involvement of CN V and magnet strength or slice thickness (r = −0.201; p = NS). A trend toward positive correlation was found between direct involvement of CN V at diagnosis and dissemination of disease at follow-up (r = 0.347; p < 0.065).Conclusions: In our cohort, direct involvement of CN V correlated with poor prognosis. Based on our data, we suggest that in DIPG direct involvement of CN V should be routinely evaluated on diagnostic scans
    corecore