37 research outputs found

    Preclinical testing of an oncolytic parvovirus in Ewing sarcoma : protoparvovirus H-1 induces apoptosis and lytic infection in vitro but fails to improve survival in vivo

    Get PDF
    About 70% of all Ewing sarcoma (EWS) patients are diagnosed under the age of 20 years. Over the last decades little progress has been made towards finding effective treatment approaches for primarily metastasized or refractory Ewing sarcoma in young patients. Here, in the context of the search for novel therapeutic options, the potential of oncolytic protoparvovirus H-1 (H-1PV) to treat Ewing sarcoma was evaluated, its safety having been proven previously tested in adult cancer patients and its oncolytic efficacy demonstrated on osteosarcoma cell cultures. The effects of viral infection were tested in vitro on four human Ewing sarcoma cell lines. Notably evaluated were effects of the virus on the cell cycle and its replication efficiency. Within 24 h after infection, the synthesis of viral proteins was induced. Efficient H-1PV replication was confirmed in all four Ewing sarcoma cell lines. The cytotoxicity of the virus was determined on the basis of cytopathic effects, cell viability, and cell lysis. These in vitro experiments revealed efficient killing of Ewing sarcoma cells by H-1PV at a multiplicity of infection between 0.1 and 5 plaque forming units (PFU)/cell. In two of the four tested cell lines, significant induction of apoptosis by H-1PV was observed. H-1PV thus meets all the in vitro criteria for a virus to be oncolytic towards Ewing sarcoma. In the first xenograft experiments, however, although an antiproliferative effect of intratumoral H-1PV injection was observed, no significant improvement of animal survival was noted. Future projects aiming to validate parvovirotherapy for the treatment of pediatric Ewing sarcoma should focus on combinatorial treatments and will require the use of patient-derived xenografts and immunocompetent syngeneic animal models

    ras oncogene-dependent activation of the P4 promoter of minute virus of mice through a proximal P4 element interacting with the Ets family of transcription factors.

    No full text
    The P4 promoter of parvovirus minute virus of mice (MVMp) directs transcription of the genes coding for nonstructural proteins. The activity of promoter P4 is regulated by several cis-acting DNA elements. Among these, a promoter-proximal GC box was shown to be essential for P4 activity (J.K. Ahn, B.J. Gavin, G. Kumar, and D.C. Ward, J. Virol. 63:5425-5439, 1989). In this study, a motif homologous to an Ets transcription factor-binding site (EBS), located immediately upstream from the GC box, was found to be required for the full activity of promoter P4 in the ras-transformed rat fibroblast cell line FREJ4. In normal parental FR3T3 cells, the transcriptional function of P4 EBS was insignificant but could be restored by transient cell transfection with the c-Ha-ras oncogene. P4 EBS may thus contribute to the stimulation of promoter P4 in ras-transformed cells. Electrophoretic mobility shift assays using crude extracts from FREJ4 cells revealed the binding of a member(s) of the Ets family of transcription factors to the P4 EBS, as well as the interaction of two members of the Sp1 family, Sp1 and Sp3, with the adjacent GC box. When produced in Drosophila melanogaster SL2 cells, Ets-1 and Sp1 proteins acted synergistically to transactivate promoter P4 through their respective cognate sites

    Translation of thyroglobulin 33S messenger RNA as a means of determining thyroglobulin quaternary structure.

    No full text
    Thyroglobulin is a 19S protein of approximately 660,000 daltons and unknown quaternary structure. We have previously shown that a 33S mRNA purified from mammalian thyroids promoted synthesis in the Xenopus oocyte of a peptide immunologically related to thyroglobulin. Chemical identity to the native protein is now presented by means of a tryptic peptide analysis. Moreover, the 33S mRNA is shown to contain all the information required for the synthesis of a complete 19S thyroglobulin molecule. Gel filtration in Sepharose under denaturing conditions indicates that the reduced polypeptide encoded by the 33S mRNA is larger than 210,000 daltons. A model of a dimeric thyroglobulin with about 300,000 dalton subunits is presented

    Complete nucleotide sequence of the human thyroperoxidase-microsomal antigen cDNA.

    No full text
    Journal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Transfection with extracellularly UV-damaged DNA induces human and rat cells to express a mutator phenotype towards parvovirus H-1.

    No full text
    Human and rat cells transfected with UV-irradiated linear double-stranded DNA from calf thymus displayed a mutator activity. This phenotype was identified by growing a lytic thermosensitive single-stranded DNA virus (parvovirus H-1) in those cells and determining viral reversion frequencies. Likewise, exogenous UV-irradiated closed circular DNAs, either double-stranded (simian virus 40) or single-stranded (phi X174), enhanced the ability of recipient cells to mutate parvovirus H-1. The magnitude of mutator activity expression increased along with the number of UV lesions present in the inoculated DNA up to a saturation level. Unirradiated DNA displayed little inducing capacity, irrespective of whether it was single or double stranded. Deprivation of a functional replication origin did not impede UV-irradiated simian virus 40 DNA from providing rat and human cells with a mutator function. Our data suggest that in mammalian cells a trans-acting mutagenic signal might be generated from UV-irradiated DNA without the necessity for damaged DNA to replicate

    Thyroperoxidase, an auto-antigen with a mosaic structure made of nuclear and mitochondrial gene modules.

    No full text
    A lambda gt11 cDNA library was constructed from a normal human thyroid and screened with a rabbit anti-porcine thyroperoxidase antibody. A series of thyroperoxidase (TPO) clones were obtained which allowed determination of the complete primary structure of the protein. The library was also screened with serum from a patient with Hashimoto's thyroiditis, an autoimmune disease characterized by the presence in the serum of high titers of autoantibodies directed against the 'microsomal antigen' (McAg). Comparison of the cDNA sequences from TPO clones and McAg clones provides definite proof that the McAg is TPO. A short segment of TPO was characterized as bearing a major epitope involved in autoimmunity. The primary structure of TPO was 42% homologous to myeloperoxidase (MPO). It contains, in addition, a C-terminal extension with a membrane anchor region contiguous to two domains encoded by modules belonging to the EGF and C4b gene families. The existence in TPO of still another domain presenting a significant homology with a putative heme-binding region of cytochrome C oxidase polypeptide I raises the possibility that a mitochondrial gene module has contributed a piece to the evolution of a typical nuclear mosaic gene
    corecore