48 research outputs found
Rapid and Sustained Symptom Relief in Patients With Ulcerative Colitis Treated With Filgotinib: Data From the Phase 2b/3 SELECTION Trial
INTRODUCTION
Patients with ulcerative colitis (UC) regard rapid onset of action among the most important aspects of their treatment. We used the partial Mayo Clinic Score (pMCS) and component patient-reported subscores to assess the rapidity and sustainability of response to filgotinib, a once-daily, oral Janus kinase 1 preferential inhibitor, in adults with moderately to severely active UC in the phase 2b/3 SELECTION trial. The association between early symptomatic improvements and health-related quality of life (HRQoL) outcomes was also assessed.
METHODS
In these post hoc analyses of the double-blinded, randomized, placebo-controlled 58-week SELECTION trial (NCT02914522), rectal bleeding and stool frequency diary data on days 1-15 and pMCS remission and response at multiple time points including weeks 10 and 58 were evaluated. HRQoL was assessed using the Inflammatory Bowel Disease Questionnaire at weeks 10 and 58.
RESULTS
Filgotinib 200 mg relative to placebo improved rectal bleeding and stool frequency within 7 days ( P < 0.05). By week 2, greater proportions of filgotinib 200 mg-treated patients than placebo-treated patients achieved pMCS remission (biologic-naive, 15.1% vs 8.0%, P = 0.0410; biologic-experienced, 10.3% vs 4.2%, P = 0.0274). A similar treatment effect was observed at week 58 ( P < 0.0001). Day 7 rectal bleeding and stool frequency subscores were associated with the Mayo Clinic Score response at weeks 10 and 58. Patients in pMCS remission at weeks 10 and 58 had greater improvements in the Inflammatory Bowel Disease Questionnaire score than those not in pMCS remission.
DISCUSSION
Filgotinib 200 mg daily resulted in rapid and sustained improvements in both UC symptoms and HRQoL
Cell line-dependent variability in HIV activation employing DNMT inhibitors
Long-lived reservoirs of Human Immunodeficiency Virus (HIV) latently infected cells present the main barrier to a cure for HIV infection. Much interest has focused on identifying strategies to activate HIV, which would be used together with antiretrovirals to attack reservoirs. Several HIV activating agents, including Tumor Necrosis Factor alpha (TNFα) and other agents that activate via NF-kB are not fully effective in all latent infection models due to epigenetic restrictions, such as DNA methylation and the state of histone acetylation. DNA methyltransferases (DNMT) inhibitors like 5-aza-2'deoxycytidine (Aza-CdR) and histone deacetylase (HDAC) inhibitors like Trichostatin A (TSA) have been proposed as agents to enhance reactivation and have shown activity in model systems. However, it is not clear how the activities of DNMT and HDAC inhibitors range across different latently infected cell lines, potential models for the many different latently infected cells within an HIV patient. We determined HIV activation following treatment with TNFα, TSA and Aza-CdR across a range of well known latently infected cell lines. We assessed the activity of these compounds in four different Jurkat T cell-derived J-Lat cell lines (6.3, 8.4, 9.2 and 10.6), which have a latent HIV provirus in which GFP replaces Nef coding sequence, and ACH-2 and J1.1 (T cell-derived), and U1 (promonocyte-derived) cell lines with full-length provirus. We found that Aza-CdR plus TNFα activated HIV at least twice as well as TNFα alone for almost all J-Lat cells, as previously described, but not for J-Lat 10.6, in which TNFα plus Aza-CdR moderately decreased activation compared to TNFα alone. Surprisingly, a much greater reduction of TNFα-stimulated activation with Aza-CdR was detected for ACH-2, J1.1 and U1 cells. Reaching the highest reduction in U1 cells with a 75% reduction. Interestingly, Aza-CdR not only decreased TNFα induction of HIV expression in certain cell lines, but also decreased activation by TSA. Since DNMT inhibitors reduce the activity of provirus activators in some HIV latently infected cell lines the use of epigenetic modifying agents may need to be carefully optimized if they are to find clinical utility in therapies aimed at attacking latent HIV reservoirs
CD4saurus Rex &HIVelociraptor vs. development of clinically useful immunological markers: a Jurassic tale of frozen evolution
One of the most neglected areas of everyday clinical practice for HIV physicians is unexpectedly represented by CD4 T cell counts when used as an aid to clinical decisions. All who care for HIV patients believe that CD4+ T cell counts are a reliable method to evaluate a patient immune status. There is however a fatalistic acceptance that besides its general usefulness, CD4+ T cell counts have relevant clincal and immunological limits. Shortcomings of CD4 counts appear in certain clinical scenarios including identification of immunological nonresponders, subsequent development of cancer on antiretroviral teatment, failure on tretment simplification. Historical and recently described parameters might be better suited to advise management of patients at certain times during their disease history. Immunogenotypic parameters and innate immune parameters that define progression as well as immune parameters associated with immune recovery are available and have not been introduced into validation processes in larger trials. The scientific and clinical community needs an effort in stimulating clinical evolution of immunological tests beyond "CD4saurus Rex" introducing new parameters in the clinical arena after appropriate validatio
Switching Virally Suppressed, Treatment-Experienced Patients to a Raltegravir-Containing Regimen Does Not Alter Levels of HIV-1 DNA
Background: Current HIV-1 antiretroviral therapy (ART) greatly reduces virus replication but does not significantly affect the viral reservoir. Raltegravir, a recently introduced integrase inhibitor, could, at least theoretically, reduce residual viremia in patients on ART and affect the viral reservoir size. The aim of this study was to assess whether switching therapy in treatment-experienced patients that were virally suppressed to a raltegravir-containing regimen reduces the size of the viral reservoir, and if such treatment leads to a change in levels of HIV 2-LTR circles in this patient group. Methods: 14 ART experienced individuals with a suppressed viral load (,50 HIV-1 RNA copies/mL plasma) at baseline (for at least 2 months) were switched to a raltegravir-containing regimen. Blood samples were taken at baseline and at $2 timepoints up to 4866 weeks. Levels of total HIV-1 DNA and 2-LTR circles in peripheral blood mononuclear cells (PBMCs) were measured using real-time PCR assays. Results: There was no significant change in HIV-1 total DNA levels over the study duration (p = 0.808), median slope 0.24 (conservative nonparametric 95 % CI: 211.78, 26.23). Low levels of 2-LTR circles were detected in 2 patients. One had 16 copies/10 6 PBMCs at baseline and the other had 34 copies/10 6 PBMCs at week 51. Conclusions: The switch to a raltegravir containing regimen was not associated with a significant change in HIV-1 total DNA levels in this cohort. There were no observed changes in the levels of HIV-1 2-LTR circles associated with raltegravi
Dynamics of HIV-1 Quasispecies during Antiviral Treatment Dissected Using Ultra-Deep Pyrosequencing
Background: Ultra-deep pyrosequencing (UDPS) allows identification of rare HIV-1 variants and minority drug resistance mutations, which are not detectable by standard sequencing. Principal Findings: Here, UDPS was used to analyze the dynamics of HIV-1 genetic variation in reverse transcriptase (RT) (amino acids 180–220) in six individuals consecutively sampled before, during and after failing 3TC and AZT containing antiretroviral treatment. Optimized UDPS protocols and bioinformatic software were developed to generate, clean and analyze the data. The data cleaning strategy reduced the error rate of UDPS to an average of 0.05%, which is lower than previously reported. Consequently, the cut-off for detection of resistance mutations was very low. A median of 16,016 (range 2,406–35,401) sequence reads were obtained per sample, which allowed detection and quantification of minorit
A Stochastic Model of Latently Infected Cell Reactivation and Viral Blip Generation in Treated HIV Patients
Motivated by viral persistence in HIV+ patients on long-term anti-retroviral treatment (ART), we present a stochastic model of HIV viral dynamics in the blood stream. We consider the hypothesis that the residual viremia in patients on ART can be explained principally by the activation of cells latently infected by HIV before the initiation of ART and that viral blips (clinically-observed short periods of detectable viral load) represent large deviations from the mean. We model the system as a continuous-time, multi-type branching process. Deriving equations for the probability generating function we use a novel numerical approach to extract the probability distributions for latent reservoir sizes and viral loads. We find that latent reservoir extinction-time distributions underscore the importance of considering reservoir dynamics beyond simply the half-life. We calculate blip amplitudes and frequencies by computing complete viral load probability distributions, and study the duration of viral blips via direct numerical simulation. We find that our model qualitatively reproduces short small-amplitude blips detected in clinical studies of treated HIV infection. Stochastic models of this type provide insight into treatment-outcome variability that cannot be found from deterministic models
HIV-1 Residual Viremia Correlates with Persistent T-Cell Activation in Poor Immunological Responders to Combination Antiretroviral Therapy
BACKGROUND:The clinical significance and cellular sources of residual human immunodeficiency virus type 1 (HIV-1) production despite suppressive combination antiretroviral therapy (cART) remain unclear and the effect of low-level viremia on T-cell homeostasis is still debated. METHODOLOGY/PRINCIPAL FINDINGS:We characterized the recently produced residual viruses in the plasma and short-lived blood monocytes of 23 patients with various immunological responses to sustained suppressive cART. We quantified the residual HIV-1 in the plasma below 50 copies/ml, and in the CD14(high) CD16(-) and CD16+ monocyte subsets sorted by flow cytometry, and predicted coreceptor usage by genotyping V3 env sequences. We detected residual viremia in the plasma of 8 of 10 patients with poor CD4+ T-cell reconstitution in response to cART and in only 5 of 13 patients with good CD4+ T-cell reconstitution. CXCR4-using viruses were frequent among the recently produced viruses in the plasma and in the main CD14(high) CD16(-) monocyte subset. Finally, the residual viremia was correlated with persistent CD4+ and CD8+ T-cell activation in patients with poor immune reconstitution. CONCLUSIONS:Low-level viremia could result from the release of archived viruses from cellular reservoirs and/or from ongoing virus replication in some patients. The compartmentalization of the viruses between the plasma and the blood monocytes suggests at least two origins of residual virus production during effective cART. CXCR4-using viruses might be produced preferentially in patients on cART. Our results also suggest that low-level HIV-1 production in some patients may contribute to persistent immune dysfunction despite cART
Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages
Background: HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages. Methodology/Principal Findings: Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96) or high (n = 96) p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16×10-5). While the association was not genome-wide significant (p<1×10-7), we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034). Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84×10-6). In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048). Conclusions/Significance: These findings suggest that the kinase DYRK1A is involved in the replication of HIV-1, in vitro in macrophages as well as in vivo. © 2011 Bol et al