15 research outputs found

    Point mutations in the transmembrane region of GABAB2 facilitate activation by the positive modulator N,N'-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) in the absence of the GABAB1 subunit.

    No full text
    GABA(B) receptors are heterodimers of two subunits, GABA(B1) (GB1) and GABA(B2) (GB2). Agonists such as GABA and baclofen bind to the GB1 subunit only, whereas GB2 is essential for G protein activation. Positive allosteric modulators enhance the potency and efficacy of agonists at GABA(B) receptors and are of particular interest because they lack the sedative and muscle relaxant properties of agonists. In this study, we aimed to characterize the interaction of the positive modulator N,N'-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) with the GABA(B) receptor heterodimer. Using functional guanosine 5'-O-(3-[(35)S]thio)triphosphate binding assays, we observed positive modulation by GS39783 in different vertebrate species but not in Drosophila melanogaster. However, coexpression of D. melanogaster GB1 with rat GB2 yielded functional receptors positively modulated by GS39783. Together with data from rat/D. melanogaster GB2 subunit chimeras, this pointed to a critical role of the GB2 transmembrane region for positive modulation. We further characterized GS39783 function using point mutations. GS39783 positively modulated GABA responses but also showed considerable agonistic activity at heterodimers containing a mutant rat GB2 subunit with three amino acid substitutions in transmembrane domain VI. It was surprising that in contrast to wild-type rat GB2, this mutant subunit was also activated by GS39783 when expressed without GB1. The mutations of both G706T and A708P are necessary and sufficient for activation and identify a key region for the effect of GS39783 in the GB2 transmembrane region. Our data show that mutations of specific amino acids in GB2 can induce agonism in addition to positive modulation and facilitate GB2 activation in the absence of GB1

    Enhanced appetitive learning and reversal learning in a mouse model for Prader-Willi syndrome

    No full text
    Prader-Willi syndrome (PWS) is caused by lack of paternally derived gene expression from the imprinted gene cluster on human chromosome 15q11-q13. PWS is characterized by severe hypotonia, a failure to thrive in infancy and, on emerging from infancy, evidence of learning disabilities and overeating behavior due to an abnormal satiety response and increased motivation by food. We have previously shown that an imprinting center deletion mouse model (PWS-IC) is quicker to acquire a preference for, and consume more of a palatable food. Here we examined how the use of this palatable food as a reinforcer influences learning in PWS-IC mice performing a simple appetitive learning task. On a nonspatial maze-based task, PWS-IC mice acquired criteria much quicker, making fewer errors during initial acquisition and also reversal learning. A manipulation where the reinforcer was devalued impaired wild-type performance but had no effect on PWS-IC mice. This suggests that increased motivation for the reinforcer in PWS-IC mice may underlie their enhanced learning. This supports previous findings in PWS patients and is the first behavioral study of an animal model of PWS in which the motivation of behavior by food rewards has been examined

    Enhancement of Wound Healing in Normal and Diabetic Mice by Topical Application of Amorphous Polyphosphate. Superior Effect of a Host–Guest Composite Material Composed of Collagen (Host) and Polyphosphate (Guest)

    No full text
    The effect of polyphosphate (polyP) microparticles on wound healing was tested both in vitro and in a mice model in vivo. Two approaches were used: pure salts of polyphosphate, fabricated as amorphous microparticles (MPs, consisting of calcium and magnesium salts of polyP, “Ca–polyp-MPs” and “Mg–polyp-MPs”), and host–guest composite particles, prepared from amorphous collagen (host) and polyphosphate (guest), termed “col/polyp-MPs”. Animal experiments with polyP on healing of excisional wounds were performed using both normal mice and diabetic mice. After a healing period of 7 days “Ca–polyp-MP” significantly improved re-epithelialization in normal mice from 31% (control) to 72% (polyP microparticle-treated). Importantly, in diabetic mice, particularly the host–guest particles “col/polyp-MP”, increased the rate of re-epithelialization to ≈40% (control, 23%). In addition, those particles increased the expression of COL-I and COL-III as well as the expression the α-smooth muscle actin and the plasminogen activator inhibitor-1. We propose that “Ca–polyp-MPs”, and particularly the host–guest “col/polyp-MPs” are useful for topical treatment of wounds

    Loss of the imprinted snoRNA mbii-52 leads to increased 5htr2c pre-RNA editing and altered 5HT2CR-mediated behaviour

    No full text
    The Prader–Willi syndrome (PWS) genetic interval contains several brain-expressed small nucleolar (sno)RNA species that are subject to genomic imprinting. In vitro studies have shown that one of these snoRNA molecules, h/mbii-52, negatively regulates editing and alternative splicing of the serotonin 2C receptor (5htr2c) pre-RNA. However, the functional consequences of loss of h/mbii-52 and subsequent increased post-transcriptional modification of 5htr2c are unknown. 5HT2CRs are important in controlling aspects of cognition and the cessation of feeding, and disruption of their function may underlie some of the psychiatric and feeding abnormalities seen in PWS. In a mouse model for PWS lacking expression of mbii-52 (PWS-IC+/−), we show an increase in editing, but not alternative splicing, of the 5htr2c pre-RNA. This change in post-transcriptional modification is associated with alterations in a number of 5HT2CR-related behaviours, including impulsive responding, locomotor activity and reactivity to palatable foodstuffs. In a non-5HT2CR-related behaviour, marble burying, loss of mbii-52 was without effect. The specificity of the behavioural effects to changes in 5HT2CR function was further confirmed using drug challenges. These data illustrate, for the first time, the physiological consequences of altered RNA editing of 5htr2c linked to mbii-52 loss that may underlie specific aspects of the complex PWS phenotype and point to an important functional role for this imprinted snoRNA

    Behavioural and cognitive abnormalities in an imprinting centre deletion mouse model for Prader–Willi syndrome

    No full text
    The genes in the imprinted cluster on human chromosome 15q11–q13 are known to contribute to psychiatric conditions such as schizophrenia and autism. Major disruptions of this interval leading to a lack of paternal allele expression give rise to Prader–Willi syndrome (PWS), a neurodevelopmental disorder with core symptoms of a failure to thrive in infancy and, on emergence from infancy, learning disabilities and over-eating. Individuals with PWS also display a number of behavioural problems and an increased incidence of neuropsychiatric abnormalities, which recent work indicates involve aspects of frontal dysfunction. To begin to examine the contribution of genes in this interval to relevant psychological and behavioural phenotypes, we exploited the imprinting centre (IC) deletion mouse model for PWS (PWS-IC+/−) and the five-choice serial reaction time task (5-CSRTT), which is primarily an assay of visuospatial attention and response control that is highly sensitive to frontal manipulations. Locomotor activity, open-field behaviour and sensorimotor gating were also assessed. PWS-IC+/− mice displayed reduced locomotor activity, increased acoustic startle responses and decreased prepulse inhibition of startle responses. In the 5-CSRTT, the PWS-IC+/− mice showed deficits in discriminative response accuracy, increased correct reaction times and increased omissions. Task manipulations confirmed that these differences were likely to be due to impaired attention. Our data recapitulate several aspects of the PWS clinical condition, including findings consistent with frontal abnormalities, and may indicate novel contributions of the imprinted genes found in 15q11–q13 to behavioural and cognitive function generally

    Semi-quantitative analysis of the intracellular accumulation of polyP in HUVEC cells after exposure of the cells to polyP; staining and cLSM analysis.

    No full text
    <p>In the control series, no polymer was added to the cells, while in the treated cultures either “Na-polyP[Ca<sup>2+</sup>]” or “Ca-polyP-MP” was added at a concentration of 30 ÎŒg/mL. The cLSM analyses have been conducted at time zero, after 1 d or 3 d. Then the intensity ratios between 480 nm (DAPI) and 658 nm [emission] (Draq5) were computed. The mean values ± SE have been determined form 50 parallel measurements; * <i>p</i> < 0.05; n = 50.</p
    corecore