3,140 research outputs found

    A stochastic model of the influence of buffer gas collisions on Mollow spectra

    Full text link
    In this paper we consider the influence of collisional fluctuations on the Mollow spectra of resonance fluorescence (RF). The fluctuations are taken into account by a simple shift of the constant detuning, involved in a set of optical Bloch equations by collision frequency noise which is modelled by a two-step random telegraph signal (RTS). We consider in detail the Mollow spectra for RF in the case of an arbitrary detuning of the laser frequency, where the emitter is a member of a statistical ensemble in thermodynamic equilibrium with the buffer gas at temperature TT which is treated as a colored environment, and velocity vv is distributed with the Maxwell-Boltzmann density

    Multiple Quantum Phases in Graphene with Enhanced Spin-Orbit Coupling: From the Quantum Spin Hall Regime to the Spin Hall Effect and a Robust Metallic State

    Get PDF
    We report an intriguing transition from the quantum spin Hall phase to the spin Hall effect upon segregation of thallium adatoms adsorbed onto a graphene surface. Landauer-B\"uttiker and Kubo-Greenwood simulations are used to access both edge and bulk transport physics in disordered thallium-functionalized graphene systems of realistic sizes. Our findings not only quantify the detrimental effects of adatom clustering in the formation of the topological state, but also provide evidence for the emergence of spin accumulation at opposite sample edges driven by spin-dependent scattering induced by thallium islands, which eventually results in a minimum bulk conductivity 4e2/h\sim 4e^{2}/h, insensitive to localization effects

    Pairing effect on the giant dipole resonance width at low temperature

    Full text link
    The width of the giant dipole resonance (GDR) at finite temperature T in Sn-120 is calculated within the Phonon Damping Model including the neutron thermal pairing gap determined from the modified BCS theory. It is shown that the effect of thermal pairing causes a smaller GDR width at T below 2 MeV as compared to the one obtained neglecting pairing. This improves significantly the agreement between theory and experiment including the most recent data point at T = 1 MeV.Comment: 8 pages, 5 figures to be published in Physical Review

    Agent-Based Modeling of Intracellular Transport

    Full text link
    We develop an agent-based model of the motion and pattern formation of vesicles. These intracellular particles can be found in four different modes of (undirected and directed) motion and can fuse with other vesicles. While the size of vesicles follows a log-normal distribution that changes over time due to fusion processes, their spatial distribution gives rise to distinct patterns. Their occurrence depends on the concentration of proteins which are synthesized based on the transcriptional activities of some genes. Hence, differences in these spatio-temporal vesicle patterns allow indirect conclusions about the (unknown) impact of these genes. By means of agent-based computer simulations we are able to reproduce such patterns on real temporal and spatial scales. Our modeling approach is based on Brownian agents with an internal degree of freedom, θ\theta, that represents the different modes of motion. Conditions inside the cell are modeled by an effective potential that differs for agents dependent on their value θ\theta. Agent's motion in this effective potential is modeled by an overdampted Langevin equation, changes of θ\theta are modeled as stochastic transitions with values obtained from experiments, and fusion events are modeled as space-dependent stochastic transitions. Our results for the spatio-temporal vesicle patterns can be used for a statistical comparison with experiments. We also derive hypotheses of how the silencing of some genes may affect the intracellular transport, and point to generalizations of the model

    Integrable and superintegrable systems associated with multi-sums of products

    Full text link
    We construct and study certain Liouville integrable, superintegrable, and non-commutative integrable systems, which are associated with multi-sums of products.Comment: 26 pages, submitted to Proceedings of the royal society
    corecore