140 research outputs found

    A Vietnamese Handwritten Text Recognition Pipeline for Tetanus Medical Records

    Get PDF
    Machine learning techniques are successful for optical character recognition tasks, especially in recognizing handwriting. However, recognizing Vietnamese handwriting is challenging with the presence of extra six distinctive tonal symbols and vowels. Such a challenge is amplified given the handwriting of health workers in an emergency care setting, where staff is under constant pressure to record the well-being of patients. In this study, we aim to digitize the handwriting of Vietnamese health workers. We develop a complete handwritten text recognition pipeline that receives scanned documents, detects, and enhances the handwriting text areas of interest, transcribes the images into computer text, and finally auto-corrects invalid words and terms to achieve high accuracy. From experiments with medical documents written by 30 doctors and nurses from the Tetanus Emergency Care unit at the Hospital for Tropical Diseases, we obtain promising results of 2% and 12% for Character Error Rate and Word Error Rate, respectively

    Label driven Knowledge Distillation for Federated Learning with non-IID Data

    Full text link
    In real-world applications, Federated Learning (FL) meets two challenges: (1) scalability, especially when applied to massive IoT networks; and (2) how to be robust against an environment with heterogeneous data. Realizing the first problem, we aim to design a novel FL framework named Full-stack FL (F2L). More specifically, F2L utilizes a hierarchical network architecture, making extending the FL network accessible without reconstructing the whole network system. Moreover, leveraging the advantages of hierarchical network design, we propose a new label-driven knowledge distillation (LKD) technique at the global server to address the second problem. As opposed to current knowledge distillation techniques, LKD is capable of training a student model, which consists of good knowledge from all teachers' models. Therefore, our proposed algorithm can effectively extract the knowledge of the regions' data distribution (i.e., the regional aggregated models) to reduce the divergence between clients' models when operating under the FL system with non-independent identically distributed data. Extensive experiment results reveal that: (i) our F2L method can significantly improve the overall FL efficiency in all global distillations, and (ii) F2L rapidly achieves convergence as global distillation stages occur instead of increasing on each communication cycle.Comment: 28 pages, 5 figures, 10 table

    The impact of albendazole treatment on the incidence of viral- and bacterial-induced diarrhea in school children in southern Vietnam: study protocol for a randomized controlled trial

    Get PDF
    Anthelmintics are one of the more commonly available classes of drugs to treat infections by parasitic helminths (especially nematodes) in the human intestinal tract. As a result of their cost-effectiveness, mass school-based deworming programs are becoming routine practice in developing countries. However, experimental and clinical evidence suggests that anthelmintic treatments may increase susceptibility to other gastrointestinal infections caused by bacteria, viruses, or protozoa. Hypothesizing that anthelmintics may increase diarrheal infections in treated children, we aim to evaluate the impact of anthelmintics on the incidence of diarrheal disease caused by viral and bacterial pathogens in school children in southern Vietnam.This is a randomized, double-blinded, placebo-controlled trial to investigate the effects of albendazole treatment versus placebo on the incidence of viral- and bacterial-induced diarrhea in 350 helminth-infected and 350 helminth-uninfected Vietnamese school children aged 6-15 years. Four hundred milligrams of albendazole, or placebo treatment will be administered once every 3 months for 12 months. At the end of 12 months, all participants will receive albendazole treatment. The primary endpoint of this study is the incidence of diarrheal disease assessed by 12 months of weekly active and passive case surveillance. Secondary endpoints include the prevalence and intensities of helminth, viral, and bacterial infections, alterations in host immunity and the gut microbiota with helminth and pathogen clearance, changes in mean z scores of body weight indices over time, and the number and severity of adverse events.In order to reduce helminth burdens, anthelmintics are being routinely administered to children in developing countries. However, the effects of anthelmintic treatment on susceptibility to other diseases, including diarrheal pathogens, remain unknown. It is important to monitor for unintended consequences of drug treatments in co-infected populations. In this trial, we will examine how anthelmintic treatment impacts host susceptibility to diarrheal infections, with the aim of informing deworming programs of any indirect effects of mass anthelmintic administrations on co-infecting enteric pathogens.ClinicalTrials.gov: NCT02597556 . Registered on 3 November 2015

    Using multiple lines of evidence to assess the risk of ecosystem collapse

    Get PDF
    Effective ecosystem risk assessment relies on a conceptual understanding of ecosystem dynamics and the synthesis of multiple lines of evidence. Risk assessment protocols and ecosystem models integrate limited observational data with threat scenarios, making them valuable tools for monitoring ecosystem status and diagnosing key mechanisms of decline to be addressed by management. We applied the IUCN Red List of Ecosystems criteria to quantify the risk of collapse of the Meso-American Reef, a unique ecosystem containing the second longest barrier reef in the world. We collated a wide array of empirical data (field and remotely sensed), and used a stochastic ecosystem model to backcast past ecosystem dynamics, as well as forecast future ecosystem dynamics under 11 scenarios of threat. The ecosystem is at high risk from mass bleaching in the coming decades, with compounding effects of ocean acidification, hurricanes, pollution and fishing. The overall status of the ecosystem is Critically Endangered (plausibly Vulnerable to Critically Endangered), with notable differences among Red List criteria and data types in detecting the most severe symptoms of risk. Our case study provides a template for assessing risks to coral reefs and for further application of ecosystem models in risk assessment

    A Comprehensive Survey of Enabling and Emerging Technologies for Social Distancing—Part II: Emerging Technologies and Open Issues

    Get PDF
    This two-part paper aims to provide a comprehensive survey on how emerging technologies, e.g., wireless and networking, artificial intelligence (AI) can enable, encourage, and even enforce social distancing practice. In Part I, an extensive background of social distancing is provided, and enabling wireless technologies are thoroughly surveyed. In this Part II, emerging technologies such as machine learning, computer vision, thermal, ultrasound, etc., are introduced. These technologies open many new solutions and directions to deal with problems in social distancing, e.g., symptom prediction, detection and monitoring quarantined people, and contact tracing. Finally, we discuss open issues and challenges (e.g., privacy-preserving, scheduling, and incentive mechanisms) in implementing social distancing in practice. As an example, instead of reacting with ad-hoc responses to COVID-19-like pandemics in the future, smart infrastructures (e.g., next-generation wireless systems like 6G, smart home/building, smart city, intelligent transportation systems) should incorporate a pandemic mode in their standard architectures/designs

    Direct observation of topoisomerase IA gate dynamics

    Get PDF
    Type IA topoisomerases cleave single-stranded DNA and relieve negative supercoils in discrete steps corresponding to the passage of the intact DNA strand through the cleaved strand. Although type IA topoisomerases are assumed to accomplish this strand passage via a protein-mediated DNA gate, opening of this gate has never been observed. We developed a single-molecule assay to directly measure gate opening of the Escherichia coli type IA topoisomerases I and III. We found that after cleavage of single-stranded DNA, the protein gate opens by as much as 6.6 nm and can close against forces in excess of 16 pN. Key differences in the cleavage, ligation, and gate dynamics of these two enzymes provide insights into their different cellular functions. The single-molecule results are broadly consistent with conformational changes obtained from molecular dynamics simulations. These results allowed us to develop a mechanistic model of interactions between type IA topoisomerases and single-stranded DNA

    A Comprehensive Survey of Enabling and Emerging Technologies for Social Distancing—Part I: Fundamentals and Enabling Technologies

    Get PDF
    Social distancing plays a pivotal role in preventing the spread of viral diseases illnesses such as COVID-19. By minimizing the close physical contact among people, we can reduce the chances of catching the virus and spreading it across the community. This two-part paper aims to provide a comprehensive survey on how emerging technologies, e.g., wireless and networking, artificial intelligence (AI) can enable, encourage, and even enforce social distancing practice. In this Part I, we provide a comprehensive background of social distancing including basic concepts, measurements, models, and propose various practical social distancing scenarios. We then discuss enabling wireless technologies which are especially effect- in social distancing, e.g., symptom prediction, detection and monitoring quarantined people, and contact tracing. The companion paper Part II surveys other emerging and related technologies, such as machine learning, computer vision, thermal, ultrasound, etc., and discusses open issues and challenges (e.g., privacy-preserving, scheduling, and incentive mechanisms) in implementing social distancing in practice

    A Comprehensive Survey of Enabling and Emerging Technologies for Social Distancing—Part II: Emerging Technologies and Open Issues

    Get PDF
    This two-part paper aims to provide a comprehensive survey on how emerging technologies, e.g., wireless and networking, artificial intelligence (AI) can enable, encourage, and even enforce social distancing practice. In Part I, an extensive background of social distancing is provided, and enabling wireless technologies are thoroughly surveyed. In this Part II, emerging technologies such as machine learning, computer vision, thermal, ultrasound, etc., are introduced. These technologies open many new solutions and directions to deal with problems in social distancing, e.g., symptom prediction, detection and monitoring quarantined people, and contact tracing. Finally, we discuss open issues and challenges (e.g., privacy-preserving, scheduling, and incentive mechanisms) in implementing social distancing in practice. As an example, instead of reacting with ad-hoc responses to COVID-19-like pandemics in the future, smart infrastructures (e.g., next-generation wireless systems like 6G, smart home/building, smart city, intelligent transportation systems) should incorporate a pandemic mode in their standard architectures/designs

    A Comprehensive Survey of Enabling and Emerging Technologies for Social Distancing—Part I: Fundamentals and Enabling Technologies

    Get PDF
    Social distancing plays a pivotal role in preventing the spread of viral diseases illnesses such as COVID-19. By minimizing the close physical contact among people, we can reduce the chances of catching the virus and spreading it across the community. This two-part paper aims to provide a comprehensive survey on how emerging technologies, e.g., wireless and networking, artificial intelligence (AI) can enable, encourage, and even enforce social distancing practice. In this Part I, we provide a comprehensive background of social distancing including basic concepts, measurements, models, and propose various practical social distancing scenarios. We then discuss enabling wireless technologies which are especially effect- in social distancing, e.g., symptom prediction, detection and monitoring quarantined people, and contact tracing. The companion paper Part II surveys other emerging and related technologies, such as machine learning, computer vision, thermal, ultrasound, etc., and discusses open issues and challenges (e.g., privacy-preserving, scheduling, and incentive mechanisms) in implementing social distancing in practice
    • …
    corecore