22 research outputs found

    Dalton Transactions

    Get PDF
    PAPER The formation of title complexes shows the effects of lanthanide metal size and amino ligand denticity on the lanthanide selenidostannates. Complexes 1a-2c exhibit semiconducting properties with band gaps between 2.08 and 2.48 eV

    The Coordination of the Tetraselenidoantimonate [SbSe 4

    No full text

    Clusters [Co(As<sub>3</sub>S<sub>3</sub>)<sub>2</sub>]<sup>2–</sup>, [Ni(As<sub>3</sub>S<sub>3</sub>)<sub>2</sub>]<sup>2–</sup>, and [{Co(en)}<sub>6</sub>(μ<sub>3</sub>‑S)<sub>4</sub>(AsS<sub>3</sub>)<sub>4</sub>]<sup>2–</sup> with Co–As or Ni–As Bonds: Solvothermal Syntheses and Characterizations of Thioarsenates Containing Transition-Metal Complexes

    No full text
    Solvothermal reactions of As<sub>2</sub>O<sub>3</sub> and S with CoCl<sub>2</sub>·6H<sub>2</sub>O or NiCl<sub>2</sub>·6H<sub>2</sub>O in an aqueous solution of dien produced novel thioarsenates [Co­(dien)<sub>2</sub>]­[Co­(As<sub>3</sub>S<sub>3</sub>)<sub>2</sub>] (<b>1</b>) and [Ni­(dien)<sub>2</sub>]­[Ni­(As<sub>3</sub>S<sub>3</sub>)<sub>2</sub>] (<b>2</b>) (dien = diethylenetriamine), and the reaction with CoCl<sub>2</sub>·6H<sub>2</sub>O in an aqueous solution of en afforded complex [Hen]<sub>2</sub>[{Co­(en)}<sub>6</sub>(μ<sub>3</sub>-S)<sub>4</sub>(AsS<sub>3</sub>)<sub>4</sub>] (<b>3</b>) (en = ethylenediamine). In <b>1</b> and <b>2</b>, one transition-metal ion is coordinated by two dien ligands to form [TM­(dien)<sub>2</sub>]<sup>2+</sup> (TM = Co, Ni) complex cations. The As<sub>3</sub>S<sub>3</sub> unit coordinates to the other TM­(II) ion with both As- and S-donor atoms to form the [TM­(As<sub>3</sub>S<sub>3</sub>)<sub>2</sub>]<sup>2–</sup> anionic cluster, in which TMAs<sub>2</sub>, TMAs<sub>2</sub>S<sub>2</sub>, and TMAs<sub>3</sub>S<sub>2</sub> rings are formed. In <b>3</b>, each Co<sup>3+</sup> ion is coordinated by an en ligand. Six Co­(en) units are interlinked by four μ<sub>3</sub>-S and four AsS<sub>3</sub> ligands to form a [{Co­(en)}<sub>6</sub>(μ<sub>3</sub>-S)<sub>4</sub>(AsS<sub>3</sub>)<sub>4</sub>]<sup>2–</sup> cluster containing an adamantane-like Co<sub>6</sub>S<sub>4</sub> core. The AsS<sub>3</sub> unit coordinates to Co atom in the η<sup>1</sup>-As<sub>1</sub>,η<sup>2</sup>-S coordination mode with As binding Co(1) and S(1) binding Co(1) and Co(2). The As<sub>3</sub>S<sub>3</sub> and AsS<sub>3</sub> ligands with both As- and S-donor atoms in <b>1</b>–<b>3</b> have never been obtained in amine solution before. The same reactions in pure dien and en solvents afforded compounds [Co­(dien)<sub>2</sub>]<sub>3</sub>[As<sub>3</sub>S<sub>6</sub>]<sub>2</sub> (<b>4</b>) and [Co­(en)<sub>3</sub>]<sub>2</sub>As<sub>2</sub>S<sub>5</sub> (<b>5</b>) containing discrete anions [As<sub>3</sub>S<sub>6</sub>]<sup>3–</sup> and [As<sub>2</sub>S<sub>5</sub>]<sup>4–</sup>, respectively. The band gaps of <b>1</b>–<b>3</b> are in the range of 1.37–1.55 eV, and the band gaps of <b>4</b> and <b>5</b> are 2.24 and 2.26 eV, which show the influence of the coordination mode of thioarsenate ligands on the electronic transitions in the TM-thioarsenates

    Hydrazine-Assisted Syntheses and Properties of Mercury Tellurides Containing Transition-Metal Complexes

    No full text
    With assistance of reactive and coordinative hydrazine, transition-metal telluromercurates [Mn­(trien)­(N<sub>2</sub>H<sub>4</sub>)<sub>2</sub>]<sub>2</sub>­[Hg<sub>2</sub>Te<sub>4</sub>]<sub>2</sub> (<b>A</b>), [Zn­(trien)­(N<sub>2</sub>H<sub>4</sub>)<sub>2</sub>]­Hg<sub>2</sub>Te<sub>4</sub> (<b>B</b>), [Mn­(tepa)­(N<sub>2</sub>H<sub>4</sub>)]<sub>2</sub>­Hg<sub>4</sub>Te<sub>12</sub> (<b>C</b>), [TM­(trien)­(Hg<sub>2</sub>Te<sub>4</sub>)] (TM = Mn (<b>D</b>), Zn (<b>E</b>)), and [Zn­(atep)]<sub>2</sub>Hg<sub>5</sub>Te<sub>12</sub> (atep = 4-(2-aminoethyl)­triethylenetetramine) (<b>F</b>) were solvothermally prepared in triethylenetetramine (trien) or tetraethylenepentamine (tepa) solvents using elemental Te as precursor in lower temperature range. Compounds <b>A</b> and <b>B</b> consist of mixed coordination cations [TM­(trien)­(N<sub>2</sub>H<sub>4</sub>)<sub>2</sub>]<sup>2+</sup> (TM = Mn, Zn) and one-dimensional polyanion [Hg<sub>2</sub>Te<sub>4</sub>]<sup>2–</sup> with the five-membered Hg<sub>2</sub>Te<sub>3</sub> rings being coplanar. Compound <b>C</b> is composed of two [Mn­(tepa)­(N<sub>2</sub>H<sub>4</sub>)]<sup>2+</sup> cations and a [Hg<sub>4</sub>Te<sub>12</sub>]<sup>4–</sup> cluster with a centrosymmetric structure. Compounds <b>D</b> and <b>E</b> consist of coordination polymer [TM­(trien) (Hg<sub>2</sub>Te<sub>4</sub>)] containing novel doubled [Hg<sub>2</sub>Te<sub>4</sub>]<sub><i>n</i></sub> chain with tetrahedrally coordinated Hg­(II) centers, which is quite different from the common single chain with the same composition of [Hg<sub>2</sub>Te<sub>4</sub>]<sub><i>n</i></sub>. <b>D</b> and <b>E</b> are the first examples of telluromercurates incorporated with TM complex units via TM–Te bonds. Compound <b>F</b> contains fivefold coordinated [Zn­(atep)]<sup>2+</sup> cations and zigzag [Hg<sub>5</sub>Te<sub>12</sub><sup>4–</sup>]<sub><i>n</i></sub> polymeric anion. The [Hg<sub>5</sub>Te<sub>12</sub><sup>4–</sup>]<sub><i>n</i></sub> anion is a new species of the binary telluromercurates. It is built from [Hg<sub>4</sub>Te<sub>6</sub>] and [HgTe<sub>2</sub>(Te<sub>4</sub>)] subunits via interconnectivity, which generates Hg<sub>3</sub>Te<sub>3</sub> and Hg<sub>4</sub>Te<sub>4</sub> rings in the structure. Compounds <b>A</b>–<b>F</b> are potential semiconductors with narrow band gaps in the range of 0.96–1.09 eV. Photocatalytic investigation of Mn­(II) complexes show that they are photocatalytically active in the degradation of CV under visible-light irradiation with the highest catalytic effective of cluster compound <b>C</b>

    Novel One‑, Two‑, and Three-Dimensional Selenidostannates Templated by Iron(II) Complex Cation

    No full text
    The novel iron selenidostannates [Fe­(bipy)<sub>3</sub>]­Sn<sub>4</sub>Se<sub>9</sub>·2H<sub>2</sub>O (<b>1</b>) and [Fe­(bipy)<sub>3</sub>]<sub>2</sub>[Sn<sub>3</sub>Se<sub>7</sub>]<sub>2</sub>·bipy·2H<sub>2</sub>O (<b>2</b>) (bipy = bipyridine) were prepared by the reactions of Sn, Se, FeCl<sub>2</sub>·4H<sub>2</sub>O, bipy, and dien with/without KSCN under hydrothermal conditions (dien = diethylenetriamine). In <b>1</b>, four SnSe<sub>5</sub> units condense via edge sharing to form the novel 3-D framework selenidostannate <sub>∞</sub><sup>3</sup>[Sn<sub>4</sub>Se<sub>9</sub><sup>2–</sup>] containing an interpenetrating channel system. The [Fe­(bipy)<sub>3</sub>]<sup>2+</sup> cations are accommodated in the different channels according to the conformation of the [Fe­(bipy)<sub>3</sub>]<sup>2+</sup> cation. In <b>2</b>, three SnSe<sub>5</sub> units share edges to form a 2-D <sub>∞</sub><sup>2</sup>[Sn<sub>3</sub>Se<sub>7</sub><sup>2–</sup>] layered anion, while two SnSe<sub>5</sub> units and one SnSe<sub>4</sub> unit are connected via edge sharing, forming a 1-D <sub>∞</sub><sup>1</sup>[Sn<sub>3</sub>Se<sub>7</sub><sup>2–</sup>] chainlike anion. The <sub>∞</sub><sup>1</sup>[Sn<sub>3</sub>Se<sub>7</sub><sup>2–</sup>], [Fe­(bipy)<sub>3</sub>]<sup>2+</sup>, bipy, and H<sub>2</sub>O species are embedded between the <sub>∞</sub><sup>2</sup>[Sn<sub>3</sub>Se<sub>7</sub><sup>2–</sup>] layers. <b>2</b> is the first example of a selenidostannate constructed by both <sub>∞</sub><sup>2</sup>[Sn<sub>3</sub>Se<sub>7</sub><sup>2–</sup>]­and <sub>∞</sub><sup>1</sup>[Sn<sub>3</sub>Se<sub>7</sub><sup>2–</sup>] anions. The coexistence of 1-D <sub>∞</sub><sup>1</sup>[Sn<sub>3</sub>Se<sub>7</sub><sup>2–</sup>] and 2-D <sub>∞</sub><sup>2</sup>[Sn<sub>3</sub>Se<sub>7</sub><sup>2–</sup>] anions in <b>2</b> might support the possible reaction mechanism that the <sub>∞</sub><sup>2</sup>[Sn<sub>3</sub>Se<sub>7</sub><sup>2–</sup>] anions are formed by condensation of the <sub>∞</sub><sup>1</sup>[Sn<sub>3</sub>Se<sub>7</sub><sup>2–</sup>] chains. <b>1</b> and <b>2</b> exhibit band gaps at 1.43 and 2.01 eV, respectively

    Solvothermal syntheses and characterizations of polysulfido-thioantimonate and thioantimonate templated by Co-phen complex cation

    No full text
    <div><p>Polysulfido-thioantimonate [Co(phen)<sub>3</sub>][Sb<sub>4</sub>S<sub>5</sub>(S<sub>4</sub>)<sub>2</sub>] (<b>1</b>), thioantimonates [Co(phen)<sub>3</sub>]<sub>2</sub>Sb<sub>18</sub>S<sub>29</sub> (<b>2</b>), and [H<sub>3</sub>O][Co(phen)<sub>3</sub>]SbS<sub>4</sub>·9H<sub>2</sub>O (<b>3</b>) (phen = 1,10-phenanthroline) were prepared using [Co(phen)<sub>3</sub>]<sup>2+</sup> formed <i>in situ</i> as a structure directing agent in 80 and 50% CH<sub>3</sub>OH aqueous solution or water solution, respectively. In <b>1</b>, eight Sb<sup>3+</sup> ions are connected by ten μ-S<sup>2−</sup> and four μ- bridging ligands to form a circular polysulfide thioantimonate anion [Sb<sub>8</sub>S<sub>10</sub>(S<sub>4</sub>)<sub>4</sub>]<sup>4−</sup> which contains a sixteen-membered Sb<sub>8</sub>S<sub>8</sub> heteroring. The Sb<sup>3+</sup> ions are in trigonal pyramidal SbS<sub>3</sub> or trigonal bipyramidal <i>ψ</i>-SbS<sub>4</sub> geometries. In <b>2</b>, sixteen SbS<sub>3</sub> and two <i>ψ</i>-SbS<sub>4</sub> units are interconnected by sharing S atoms to form a 3-D [Sb<sub>18</sub>S<sub>29</sub><sup>4−</sup>]<sub>∞</sub> framework containing an interpenetrating channel system, in which the [Co(phen)<sub>3</sub>]<sup>2+</sup> complexes are enclosed. In <b>3</b>, by O–H⋯O and O–H⋯S H-bonding, [SbS<sub>4</sub>]<sup>3−</sup>,·H<sub>2</sub>O and H<sub>3</sub>O<sup>+</sup> are interconnected into a anionic layer, which contains a (H<sub>2</sub>O)<sub>6</sub> water cluster. The [Co(phen)<sub>3</sub>]<sup>2+</sup> complexes are located between the layers. The syntheses of <b>1</b>–<b>3</b> show the influences of different solvents on the Co/Sb/S/phen system. The optical band gaps of <b>1</b>–<b>3</b> are 2.02, 2.11, and 2.27 eV, respectively.</p></div
    corecore