14 research outputs found

    Protein associated with SMAD1 (PAWS1/FAM83G) is a substrate for type I bone morphogenetic protein receptors and modulates bone morphogenetic protein signalling

    Get PDF
    Bone morphogenetic proteins (BMPs) control multiple cellular processes in embryos and adult tissues. BMPs signal through the activation of type I BMP receptor kinases, which then phosphorylate SMADs 1/5/8. In the canonical pathway, this triggers the association of these SMADs with SMAD4 and their translocation to the nucleus, where they regulate gene expression. BMPs can also signal independently of SMAD4, but this pathway is poorly understood. Here, we report the discovery and characterization of PAWS1/FAM83G as a novel SMAD1 interactor. PAWS1 forms a complex with SMAD1 in a SMAD4-independent manner, and BMP signalling induces the phosphorylation of PAWS1 through BMPR1A. The phosphorylation of PAWS1 in response to BMP is essential for activation of the SMAD4-independent BMP target genes NEDD9 and ASNS. Our findings identify PAWS1 as the first non-SMAD substrate for type I BMP receptor kinases and as a novel player in the BMP pathway. We also demonstrate that PAWS1 regulates the expression of several non-BMP target genes, suggesting roles for PAWS1 beyond the BMP pathway

    A NuRD Complex from Xenopus laevis Eggs Is Essential for DNA Replication during Early Embryogenesis.

    Get PDF
    DNA replication in the embryo of Xenopus laevis changes dramatically at the mid-blastula transition (MBT), with Y RNA-independent random initiation switching to Y RNA-dependent initiation at specific origins. Here, we identify xNuRD, an MTA2-containing assemblage of the nucleosome remodeling and histone deacetylation complex NuRD, as an essential factor in pre-MBT Xenopus embryos that overcomes a functional requirement for Y RNAs during DNA replication. Human NuRD complexes have a different subunit composition than xNuRD and do not support Y RNA-independent initiation of DNA replication. Blocking or immunodepletion of xNuRD inhibits DNA replication initiation in isolated nuclei in vitro and causes inhibition of DNA synthesis, developmental delay, and embryonic lethality in early embryos. xNuRD activity declines after the MBT, coinciding with dissociation of the complex and emergence of Y RNA-dependent initiation. Our data thus reveal an essential role for a NuRD complex as a DNA replication factor during early Xenopus development

    USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling

    Get PDF
    Protein kinase ALK3/BMPR1A mediates bone morphogenetic protein (BMP) signalling through phosphorylation and activation of SMADs 1/5/8. SMAD6, a transcriptional target of BMP, negatively regulates the BMP pathway by recruiting E3 ubiquitin ligases and targeting ALK3 for ubiquitin-mediated degradation. Here, we identify a deubiquitylating enzyme USP15 as an interactor of SMAD6 and ALK3. We show that USP15 enhances BMP-induced phosphorylation of SMAD1 by interacting with and deubiquitylating ALK3. RNAi-mediated depletion of USP15 increases ALK3 K48-linked polyubiquitylation, and reduces both BMP-induced SMAD1 phosphorylation and transcription of BMP target genes. We also show that loss of USP15 expression from mouse myoblast cells inhibits BMP-induced osteoblast differentiation. Furthermore, USP15 modulates BMP-induced phosphorylation of SMAD1 and transcription during Xenopus embryogenesis

    Cleavage by signal peptide peptidase is required for the degradation of selected tail-anchored proteins.

    Get PDF
    The regulated turnover of endoplasmic reticulum (ER)-resident membrane proteins requires their extraction from the membrane lipid bilayer and subsequent proteasome-mediated degradation. Cleavage within the transmembrane domain provides an attractive mechanism to facilitate protein dislocation but has never been shown for endogenous substrates. To determine whether intramembrane proteolysis, specifically cleavage by the intramembrane-cleaving aspartyl protease signal peptide peptidase (SPP), is involved in this pathway, we generated an SPP-specific somatic cell knockout. In a stable isotope labeling by amino acids in cell culture-based proteomics screen, we identified HO-1 (heme oxygenase-1), the rate-limiting enzyme in the degradation of heme to biliverdin, as a novel SPP substrate. Intramembrane cleavage by catalytically active SPP provided the primary proteolytic step required for the extraction and subsequent proteasome-dependent degradation of HO-1, an ER-resident tail-anchored protein. SPP-mediated proteolysis was not limited to HO-1 but was required for the dislocation and degradation of additional tail-anchored ER-resident proteins. Our study identifies tail-anchored proteins as novel SPP substrates and a specific requirement for SPP-mediated intramembrane cleavage in protein turnover

    The DUF1669 domain of FAM83 family proteins anchor casein kinase 1 isoforms

    Get PDF
    Members of the casein kinase 1 (CK1) family of serine-threonine protein kinases are implicated in the regulation of many cellular processes, including the cell cycle, circadian rhythms, and Wnt and Hedgehog signaling. Because these kinases exhibit constitutive activity in biochemical assays, it is likely that their activity in cells is controlled by subcellular localization, interactions with inhibitory proteins, targeted degradation, or combinations of these mechanisms. We identified members of the FAM83 family of proteins as partners of CK1 in cells. All eight members of the FAM83 family (FAM83A to FAM83H) interacted with the α and α-like isoforms of CK1; FAM83A, FAM83B, FAM83E, and FAM83H also interacted with the δ and ε isoforms of CK1. We detected no interaction between any FAM83 member and the related CK1γ1, CK1γ2, and CK1γ3 isoforms. Each FAM83 protein exhibited a distinct pattern of subcellular distribution and colocalized with the CK1 isoform(s) to which it bound. The interaction of FAM83 proteins with CK1 isoforms was mediated by the conserved domain of unknown function 1669 (DUF1669) that characterizes the FAM83 family. Mutations in FAM83 proteins that prevented them from binding to CK1 interfered with the proper subcellular localization and cellular functions of both the FAM83 proteins and their CK1 binding partners. On the basis of its function, we propose that DUF1669 be renamed the polypeptide anchor of CK1 domain

    CELL-TO-CELL SPREAD BY

    No full text
    This manuscript has been repmbced fFDm the microfilm master. UMI films the text diredly hwn the Original or copy submitted. Thus, sane and dissertation copies are in typemiter face, while others may be from any type of computer printer. The quality of thk reproduction is depedmt upon the quality of the copy submitted. Woken or indistinct cdomd or poor qualii illustratiorrs and photographs. pfint Meedthrough, shtawbd margins, and impmpew alignment can adversely affect reproduction. In the unlikety event that iha author did not send UMI a complete manutaipt and there am missing pages. these will be noted. Also, if unauthoriteed copyrioht material had to be removed, a will indii the de(etion. Oversize ma&riaIs (eg.. maps, dWngs, charts) am mpmdmd by sectioning the original, beginning at UUB upper le(t4mnd comer and eontiwing from left to right in equal sections with small ov-s, Photographs induded in the original mawalpt have been reQrodUCBd xerographically in this copy. Highew quality 6 " x Q bbdc and white photographic prints are available for any photographs or illusbations appearing in this copy fw an additional charge. Confact UMI directly to order

    Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning

    No full text
    Signal transduction through the FGF receptor is essential for the specification of the vertebrate body plan. Blocking the FGF pathway in early Xenopus embryos inhibits mesoderm induction and results in truncation of the anterior–posterior axis. The Drosophila gene sprouty encodes an antagonist of FGF signaling, which is transcriptionally induced by the pathway, but whose molecular functions are poorly characterized. We have cloned Xenopus sprouty2 and show that it is expressed in a similar pattern to known FGFs and is dependent on the FGF/Ras/MAPK pathway for its expression. Overexpression of Xsprouty2 in both embryos and explant assays results in the inhibition of the cell movements of convergent extension. Although blocking FGF/Ras/MAPK signaling leads to an inhibition of mesodermal gene expression, these markers are unaffected by Xsprouty2, indicating that mesoderm induction and patterning occurs normally in these embryos. Finally, using Xenopus oocytes we show that Xsprouty2 is an intracellular antagonist of FGF-dependent calcium signaling. These results provide evidence for at least two distinct FGF-dependent signal transduction pathways: a Sprouty-insensitive Ras/MAPK pathway required for the transcription of most mesodermal genes, and a Sprouty-sensitive pathway required for coordination of cellular morphogenesis
    corecore