66 research outputs found

    Accommodating Dynamic Oceanographic Processes and Pelagic Biodiversity in Marine Conservation Planning

    Get PDF
    Pelagic ecosystems support a significant and vital component of the ocean's productivity and biodiversity. They are also heavily exploited and, as a result, are the focus of numerous spatial planning initiatives. Over the past decade, there has been increasing enthusiasm for protected areas as a tool for pelagic conservation, however, few have been implemented. Here we demonstrate an approach to plan protected areas that address the physical and biological dynamics typical of the pelagic realm. Specifically, we provide an example of an approach to planning protected areas that integrates pelagic and benthic conservation in the southern Benguela and Agulhas Bank ecosystems off South Africa. Our aim was to represent species of importance to fisheries and species of conservation concern within protected areas. In addition to representation, we ensured that protected areas were designed to consider pelagic dynamics, characterized from time-series data on key oceanographic processes, together with data on the abundance of small pelagic fishes. We found that, to have the highest likelihood of reaching conservation targets, protected area selection should be based on time-specific data rather than data averaged across time. More generally, we argue that innovative methods are needed to conserve ephemeral and dynamic pelagic biodiversity

    Centrioles: active players or passengers during mitosis?

    Get PDF
    Centrioles are cylinders made of nine microtubule (MT) triplets present in many eukaryotes. Early studies, where centrosomes were seen at the poles of the mitotic spindle led to their coining as “the organ for cell division”. However, a variety of subsequent observational and functional studies showed that centrosomes might not always be essential for mitosis. Here we review the arguments in this debate. We describe the centriole structure and its distribution in the eukaryotic tree of life and clarify its role in the organization of the centrosome and cilia, with an historical perspective. An important aspect of the debate addressed in this review is how centrioles are inherited and the role of the spindle in this process. In particular, germline inheritance of centrosomes, such as their de novo formation in parthenogenetic species, poses many interesting questions. We finish by discussing the most likely functions of centrioles and laying out new research avenues

    First evidence for a massive extinction event affecting bees close to the K-T boundary

    Get PDF
    Bees and eudicot plants both arose in the mid-late Cretaceous, and their co-evolutionary relationships have often been assumed as an important element in the rise of flowering plants. Given the near-complete dependence of bees on eudicots we would expect that major extinction events affecting the latter would have also impacted bees. However, given the very patchy distribution of bees in the fossil record, identifying any such extinctions using fossils is very problematic. Here we use molecular phylogenetic analyses to show that one bee group, the Xylocopinae, originated in the mid-Cretaceous, coinciding with the early radiation of the eudicots. Lineage through time analyses for this bee subfamily show very early diversification, followed by a long period of seemingly no radiation and then followed by rapid diversification in each of the four constituent tribes. These patterns are consistent with both a long-fuse model of radiation and a massive extinction event close to the K-T boundary. We argue that massive extinction is much more plausible than a long fuse, given the historical biogeography of these bees and the diversity of ecological niches that they occupy. Our results suggest that events near the K-T boundary would have disrupted many plant-bee relationships, with major consequences for the subsequent evolution of eudicots and their pollinators.Sandra M. Rehan, Remko Leys, Michael P. Schwar

    R. V. Dingle Ostracod Collection: Natural History Museum, London

    Get PDF
    The collection was donated to the Natural History Museum (NHM) between 2009 and 2011 and consists of 2534 slides. It comprises mainly marine ostracods of Jurassic to Holocene age from southern Africa (and its adjacent oceans), Antarctica and New Zealand. There is also a small collection of Quaternary non-marine ostracods from southwestern Africa, two sets of DSDP/ODP ostracods from the Southern Ocean, and one set of Cape Roberts Drilling Project (CRDP) ostracods from Victoria Land, East Antarctica. The individual slides in this collection have been computer registered. Further details of these can be found by inputting seach criteria based on information given in the paper to the NHM’s on-line catalogue at http://www.nhm.ac.uk/research-curation/collections/departmental-collections/palaeontology-collections/search/index.php.© Author(s) 2012. This work is distributed under the Creative Commons Attribution 4.0 License

    Significance of Upper Jurassic Sediments in the Knysna Outlier (Cape Province)

    No full text

    Jurassic and Early Cretaceous Ostracods from Western Australia: What They Reveal About Evolution of the Indian Ocean

    No full text
    corecore