16 research outputs found

    A novel method of interference source direction-finding with an existing single antenna beam in communication satellites

    Get PDF
    Interference has recently become a critical factor in communication satellite performance, and the interference source location is one of the most important factors in resolving this issue. The article proposes an innovative method of interference source direction-finding suitable for communication satellites with an existing single antenna beam and single radio frequency (RF) channel, which utilizes the symmetry of the antenna pattern to search for interference sources. Compared to traditional position methods with time-frequency-synchronized multi-satellites or a directing antenna array in a single satellite, the method does not require any particular direction-finding payload in communication satellites and shares existing antennas and RF channels with communication systems in satellites. The ability to find the direction of the interference source is a software-defined function in the communication processor. The proposed method provides a novel way to solve the problems of interference source direction-finding with the least engineering complexity, and it has excellent coexistence with other existing systems in communication satellites. The computer simulation and out-field experiment results in this article show that the method has excellent performance with high direction-finding resolution within extensive coverage, offering significant value and bright prospects for resolving the growing interference issues in communication satellites

    Smart Anomaly Prediction in Nonstationary CT Colonography Screening

    No full text

    Stigma and petals of Crocus sativus L.: Review and comparison of phytochemistry and pharmacology

    No full text
    Crocus sativus L. (C. sativus), known as “plant gold ”, has numerous functions in traditional Chinese medicine, including promoting blood circulation, removing blood stasis, cooling blood, detoxifying, relieving depression, and calming the nerves. Its stigma, the main medicinal part, performs extremely low yield and high price, thus the scarce resources, while its petals, the by-product, are usually discarded or employed as fertilizer or feed, resulting in huge waste, as the petals have been proved to contain various chemical components covering terpenoids, flavonoids, and glycosides, which exhibits pharmacological activities of analgesia, anti-inflammatory, cardiovascular protection, liver protection, and antidepressant. This paper aims to compare the material basis of the pharmacological similarities or differences between stigmas and petals, clarify their research status, and evaluate the potential application value of petals. As a by-product of a precious traditional herbal medicine, the petals of C. sativus have been elucidated in previous studies. This review explores the chemical constituents and pharmacological effect of stigma and petals of C. sativus, confirming their similar material bases, and the application prospect of petals

    Effects of Huanglian-Renshen-Decoction, a Fixed Mixture of Traditional Chinese Medicine, on the Improvement of Glucose Metabolism by Maintenance of Pancreatic β Cell Identity in db/db Mice

    No full text
    Huanglian-Renshen-Decoction (HRD) is widely used to treat type 2 diabetes mellitus (T2DM) in China. However, the underlying mechanism is unclear. We aimed to investigate the mechanism by which HRD regulates the glucose level. Forty 7-8-week-old db/db (BSK) mice were randomly assigned to the following four groups: model, low dose HRD (LHRD), high dose HRD (HHRD), and saxagliptin (SAX). Additionally, 10 db/m mice were assigned to control group. The experimental mice were administered 3.03g/kg/d and 6.06g/kg/d of HRD in the LHRD and HHRD groups, respectively, and 10mg/kg/d saxagliptin in the SAX group for 8 weeks. The control and model groups were supplied with distilled water. After the intervention, the pancreas and blood were collected and tested. Compared with that of model group, the fasting blood glucose (FBG) was significantly decreased in all intervention groups (p < 0.05 or 0.01), whereas fasting serum insulin (FINS) was increased significantly in both HHRD and SAX groups. The immunofluorescence images showed that the mass of insulin+ cells was increased and that of glucagon+ cells was reduced obviously in experimental groups compared to those of the model group. In addition, the coexpression of insulin, glucagon, and PDX1 was decreased in HHRD group, and the level of caspase 12 in islet was decreased significantly in all intervention groups. However, little difference was found in the number and morphology of islet, and the expression of ki67, bcl2, bax, caspase 3, and cleaved-caspase 3 in the pancreas among groups. Interestingly, the cleaved-Notch1 level was increased and the Ngn3 level in islet was decreased significantly in HHRD group. The HRD showed dose-dependent effects on glucose metabolism improvement through maintenance of β cell identity via a mechanism that might involve the Notch1/Ngn3 signal pathway in db/db mice

    LncRNA OIP5-AS1 inhibits ferroptosis in prostate cancer with long-term cadmium exposure through miR-128-3p/SLC7A11 signaling

    No full text
    Previous studies suggest that cadmium (Cd) is one of the causative factors of prostate cancer (PCa), but the effect of chronic Cd exposure on PCa progression remains unclear. Besides, whether long noncoding RNAs (lncRNAs) are involved in the regulation of prolonged exposure to Cd in PCa needs to be elucidated. In the present study, we found that the serum concentration of Cd in PCa patients was positively correlated with the Gleason score and tumor-node-metastasis (TNM) classification. To simulate chronic Cd exposure in PCa, we subjected PC3 and DU145 cells to long-term, low-dose Cd exposure and further examined tumor behavior. Functional studies identified that chronic Cd exposure promoted cell growth and ferroptosis resistance in vitro and in vivo. Furthermore, we found that lncRNA OIP5-AS1 expression was greatly elevated in PC3 and DU145 cells upon chronic Cd exposure. Dysregulation of OIP5-AS1 expression mediated cell growth and Cd-induced ferroptosis. Mechanistically, we demonstrated that OIP5-AS1 served as an endogenous sponge of miR-128-3p to regulate the expression of SLC7A11, a surrogate marker of ferroptosis. Moreover, miR-128-3p decreased cell viability by enhancing ferroptosis. Taken together, our data indicate that lncRNA OIP5-AS1 promotes PCa progression and ferroptosis resistance through miR-128-3p/SLC7A11 signaling
    corecore