2 research outputs found

    New advancements in charge-coupled device technology - sub-electron noise and 4096×4096 pixel CCDs

    Get PDF
    This paper reports on two new advancements in CCD technology. The first area of development has produced a special purpose ceo designed for ultra low-signal level imaging and spectroscopy applications that require sub-electron read noise floors. A nondestructive output circuit operating near its 1/f noise regime is clocked in a special manner to read a single pixel multiple times. Off-chip electronics average the multiple values, reducing the random noise by the square-root of the number of samples taken. Noise floors below 0.5 electrons rms are reported. The second development involves the design and performance of a high resolution imager of 4096x4096 pixels, the largest ceo manufactured in terms of pixel count. The device utilizes a 7.5-micron pixel fabricated with three-level poly silicon to achieve high yield

    Mars Science Laboratory Engineering Cameras

    Get PDF
    NASA's Mars Science Laboratory (MSL) Rover, which launched to Mars in 2011, is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover (MER) cameras, which were sent to Mars in 2003. The engineering cameras weigh less than 300 grams each and use less than 3 W of power. Images returned from the engineering cameras are used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The hazard avoidance cameras (Haz - cams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a frame-transfer CCD (charge-coupled device) with a 1024x1024 imaging region and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer A and the other set is connected to rover computer B. The MSL rover carries 8 Hazcams and 4 Navcams
    corecore