824 research outputs found

    Frozen water waves over rough topographical bottoms

    Full text link
    The propagation of surface water waves over rough topographical bottoms is investigated by the multiple scattering theory. It is shown that the waves can be localized spatially through the process of multiple scattering and wave interference, a peculiar wave phenomenon which has been previously discussed for frozen light in optical systems (S. John, Nature {\bf 390}, 661, (1997)). We demonstrate that when frozen, the transmission of the waves falls off exponentially, and a cooperative behavior appears, fully supporting previous predictions. A phase diagram method is used to illustrate this distinct phase states in the wave propagation.Comment: 4 pages and 5 figure

    Gravity waves over topographical bottoms: Comparison with the experiment

    Full text link
    In this paper, the propagation of water surface waves over one-dimensional periodic and random bottoms is investigated by the transfer matrix method. For the periodic bottoms, the band structure is calculated, and the results are compared to the transmission results. When the bottoms are randomized, the Anderson localization phenomenon is observed. The theory has been applied to an existing experiment (Belzons, et al., J. Fluid Mech. {\bf 186}, 530 (1988)). In general, the results are compared favorably with the experimental observation.Comment: 15 pages, 7 figure

    Multiple Labeling in Electron Microscopy: Its Application in Cardiovascular Research

    Get PDF
    The heart is a muscular pump kept together by a network of extracellular matrix components. An increase in collagens, as in chronic congestive heart failure (CHF), is thought to have a negative effect on cardiac compliance and, thus, on the clinical condition. Conventional electron microscopy allows for the study of cellular and extracellular components and scanning electron microscopy (SEM) can put these structures in three-dimensional perspective. However, in order to study extracellular matrix components in relation to cells, immunoelectron microscopy is superior. We have used this technique in our studies on heart failure. Heart specimens were fixed in 4% paraformaldehyde and 0.1% glutaraldehyde in sodium cacodylate buffer, dehydrated by the method of progressive lowering of temperature and embedded in LR Gold plastic. Immunolabeling could be achieved with different sized gold-conjugated secondary antibodies or protein-A gold conjugates. Depending on the objective, ultra small gold (USG) conjugates or a regular probe size can be used. Labeling efficiency could be increased by bridging antibodies. The double and triple staining procedures were based on single staining methods using one-and two-face labeling. The choice of antibodies and gold conjugates depended on the objectives. Immunoelectron microscopy, using multiple labeling, allowed a detailed study of the organization of the extracellular matrix and its relationship with cardiac myocytes. This may prove to be a useful tool for the study of chronic heart failure
    • …
    corecore