10,492 research outputs found
Assessing English language learners' collocation knowledge:A systematic review of receptive and productive measurements
Since collocation knowledge is integral to second language vocabulary depth, it necessitates a careful examination of various measurement approaches. To this end, the current paper provides an overview and evaluation of extant collocation measurements used in empirical studies on L2 English (N = 153) published between 1980 and 2023 indexed in the SSCI, SCIE, AHCI, SCOPUS, and ERIC databases. Six instruments, seven item formats, and three other assessment tools were identified and reviewed for the assessment of receptive and productive collocation knowledge. The review focused on the collocation knowledge measured by each tool, the instrument and/or item format employed, item design, reported reliability, and potential drawbacks of employing each instrument and item format in research or practice. The review proposes several theoretical and practical considerations for future assessments of and research on English collocation knowledge.</p
Spin Fluctuations and Unconventional Superconductivity in the Fe-based Oxypnictide Superconductor LaFeAsO_0.7 probed by 57Fe-NMR
We report Fe-NMR studies on the oxygen-deficient iron (Fe)-based
oxypnictide superconductor LaFeAsO ( 28 K) enriched by
Fe isotope. In the superconducting state, the spin component of
Fe-Knight shift decreases almost to zero at low temperatures
and the nuclear spin-lattice relaxation rate exhibits a
-like dependence without the coherence peak just below , which
give firm evidence of the unconventional superconducting state formed by
spin-singlet Cooper pairing. All these events below are consistently
argued in terms of the extended s-wave pairing with a sign reversal of
the order parameter among Fermi surfaces. In the normal state, we found the
remarkable decrease of upon cooling for both the Fe and As sites,
which originates from the decrease of low-energy spectral weight of spin
fluctuations over whole space upon cooling below room temperature.
Such behavior has never been observed for other strongly correlated
superconductors where an antiferromagnetic interaction plays a vital role in
mediating the Cooper pairing.Comment: 4 pages, 4 figures,Accepted for publication in J. Phys. Soc. Jpn.,
vol.78, No.1 (2009
Fermi Surface Evolution, Pseudo Gap and Stagger Gauge Field Fluctuation in Underdoped Cuprates
In the context of t-J model we show that in underdoped regime,beside the
usual long wave length gauge field fluctuation, an additional low energy
fluctuation, staggered gauge field fluctuation plays a crucial role in the
evolution of Fermi surface(FS) as well as the line shape of spectral function
for the cuprates. By including the staggered gauge field fluctuation we
calculate the spectral function of the electrons by RPA(random phase
approximation). The line shape of the spectral function near is very
broad in underdoped case and is quite sharp in overdoped case. For the spectral
function near , the quasiparticle peaks are always very sharp
in both underdoped and overdoped case. The temperature dependence of the
spectral function is also discussed in our present calculation. These results
fit well with the recent ARPES experiments. We also calculate the FS crossover
from a small four segment like FS to a large continuous FS. The reason of such
kind of FS crossover is ascribed to the staggered gauge field fluctuation which
is strong in underdoped regime and becomes much weaker in overdoped regime. The
pseudo gap extracted from the ARPES data can be also interpreted by the
calculation.Comment: 4 pages,6 eps figures include
Superconducting Gap Anisotropy and Quasiparticle Interactions: a Doping Dependent ARPES Study
Comparing ARPES measurements on Bi2212 with penetration depth data, we show
that a description of the nodal excitations of the d-wave superconducting state
in terms of non-interacting quasiparticles is inadequate, and we estimate the
magnitude and doping dependence of the Landau interaction parameter which
renormalizes the linear T contribution to the superfluid density. Furthermore,
although consistent with d-wave symmetry, the gap with underdoping cannot be
fit by the simple coskx-cosky form, which suggests an increasing importance of
long range interactions as the insulator is approached.Comment: 4 pages, 3 eps figs, manuscript and Fig. 3 significantly revise
Coherent quasiparticle weight and its connection to high-T_c superconductivity from angle-resolved photoemission
In conventional superconductors, the pairing energy gap (\Delta) and
superconducting phase coherence go hand-in-hand. As the temperature is lowered,
both the energy gap and phase coherence appear at the transition temperature
T_c. In contrast, in underdoped high-T_c superconductors (HTSCs), a pseudogap
appears at a much higher temperature T^*, smoothly evolving into the
superconducting gap at T_c. Phase coherence on the other hand is only
established at T_c, signaled by the appearance of a sharp quasiparticle (QP)
peak in the excitation spectrum. Another important difference between the two
types of superconductors is in the ratio of 2\Delta / T_c=R. In BCS theory,
R~3.5, is constant. In the HTSCs this ratio varies widely, continuing to
increase in the underdoped region, where the gap increases while T_c decreases.
Here we report that in HTSCs it is the ratio z_A\Delta_m/T_c which is
approximately constant, where \Delta_m is the maximum value of the d-wave gap,
and z_A is the weight of the coherent excitations in the spectral function.
This is highly unusual, since in nearly all phase transitions, T_c is
determined by an energy scale alone. We further show that in the
low-temperature limit, z_{\it A} increases monotonically with increasing doping
x. The growth is linear, i.e. z_A(x)\propto x, in the underdoped to optimally
doped regimes, and slows down in overdoped samples. The reduction of z_A with
increasing temperature resembles that of the c-axis superfluid density.Comment: 11 pages, 5 figures, revised versio
Coexistence of Itinerant Electrons and Local Moments in Iron-Based Superconductors
In view of the recent experimental facts in the iron-pnictides, we make a
proposal that the itinerant electrons and local moments are simultaneously
present in such multiband materials. We study a minimal model composed of
coupled itinerant electrons and local moments to illustrate how a consistent
explanation of the experimental measurements can be obtained in the leading
order approximation. In this mean-field approach, the spin-density-wave (SDW)
order and superconducting pairing of the itinerant electrons are not directly
driven by the Fermi surface nesting, but are mainly induced by their coupling
to the local moments. The presence of the local moments as independent degrees
of freedom naturally provides strong pairing strength for superconductivity and
also explains the normal-state linear-temperature magnetic susceptibility above
the SDW transition temperature. We show that this simple model is supported by
various anomalous magnetic properties and isotope effect which are in
quantitative agreement with experiments.Comment: 7 pages, 4 figures; an expanded versio
Competitions of magnetism and superconductivity in FeAs-based materials
Using the numerical unrestricted Hartree-Fock approach, we study the ground
state of a two-orbital model describing newly discovered FeAs-based
superconductors. We observe the competition of a mode spin-density
wave and the superconductivity as the doping concentration changes. There might
be a small region in the electron-doping side where the magnetism and
superconductivity coexist. The superconducting pairing is found to be spin
singlet, orbital even, and mixed s + d wave (even
parity).Comment: 5 pages, 3 figure
Dispersion of a single hole in the t-J model
The dispersion of a single hole in the t-J model obtained by the exact result
of 32 sites and the results obtained by self-consistent Born approximation and
the Green function Monte Carlo method can be simply derived by a mean-field
theory with d-RVB and antiferromagnetic order parameters. In addition, it
offers a simple explanation for the difference observed between those results.
The presence of the extended van Hove region at (pi,0) is a consequence of the
d-RVB pairing independenct of the antiferromagnetic order. Results including t'
and t" are also presented and explained consistently in a similar way.Comment: LaTex file, 5 pages with 5 embedded eps figure
Impurity-induced in-gap state and Tc in sign-reversing s-wave superconductors: analysis of iron oxypnictide superconductors
The sign-reversing fully gapped superconducting state, which is expected to
be realized in oxypnictide superconductors, can be prominently affected by
nonmagnetic impurities due to the interband scattering of Cooper pairs. We
study this problem based on the isotropic two-band BCS model: In oxypnictide
superconductors, the interband impurity scattering is not equal to the
intraband one . In the Born scattering regime, the reduction in Tc is
sizable and the impurity-induced density of states (DOS) is prominent if , due to the interband scattering. Although impurity-induced DOS can yield a
power-law temperature dependence in , a sizable suppression in Tc is
inevitably accompanied. In the unitary scattering regime, in contrast, impurity
effect is very small for both Tc and DOS except at . By comparing theory
and experiments, we expect that the degree of anisotropy in the -wave
gap function strongly depends on compounds.Comment: 16 pages, 5 figures, to be published in New. J. Phy
Pseudogap in 1d revisited
Two decades ago, Sadovskii found an exact solution of a model describing a
pseudogap in electron energy spectrum (first introduced by Lee, Rice and
Anderson). The discovery of a pseudogap in high-Tc superconductors has revived
the interest to his exact solution. I review the model with the emphasis on
physical content, point out an error in the original Sadovskii's solution and
explain which problem he actually solved. A recent incorporation of Sadovskii's
ideas into a description of "hot spots" on the Fermi surface in cuprate
superconductors (Schmalian, Pines and Stojkovic) is briefly discussed.Comment: Final version to appear in PR
- …