9 research outputs found

    Histone regulator KAT2A acts as a potential biomarker related to tumor microenvironment and prognosis of diffuse large B cell lymphoma

    No full text
    Abstract Background Recent studies have indicated that epigenetic alterations contribute significantly to lymphoma pathogenesis. A type of epigenetic regulation known as histone acetylation plays a crucial role in transcriptional regulation in eukaryotic cells. Specifically, a significant effect of histone acetylation modifications on the abnormal progression and microenvironment of diffuse large B-cell lymphoma (DLBCL) has been observed. Methods To provide insight into the significance of histone acetylation-related genes, we developed a HAscore model for analyzing histone acetylation patterns in DLBCL samples. Furthermore, KAT2A, a regulator of histone acetylation, was knocked down in DLBCL cell lines to investigate its role in proliferation, cell cycle, and apoptosis. Results The HAscore model has been demonstrated to provide insight into the significance of these patterns, showing that patients with a low HAscore have distinct tumor immune microenvironments and poorer prognoses. Besides, KAT2A was identified as a potential biomarker related to immune infiltration and malignant pathways in DLBCL. Conclusion According to these findings, it is evident that the histone acetylation pattern score model is helpful in describing the immune status of DLBCL and that KAT2A may be used as a biomarker for its treatment

    Polyploid evolution in Oryza officinalis complex of the genus Oryza

    No full text
    BACKGROUND: Polyploidization is a prominent process in plant evolution, whereas the mechanism and tempo-spatial process remained poorly understood. Oryza officinalis complex, a polyploid complex in the genus Oryza, could exemplify the issues not only for it covering a variety of ploidy levels, but also for the pantropical geographic pattern of its polyploids in Asia, Africa, Australia and Americas, in which a pivotal genome, the C-genome, witnessed all the polyploidization process. RESULTS: Tracing the C-genome evolutionary history in Oryza officinalis complex, this study revealed the genomic relationships, polyploid forming and diverging times, and diploidization process, based on phylogeny, molecular-clock analyses and fluorescent in situ hybridization using genome-specific probes. Results showed that C-genome split with B-genome at ca. 4.8 Mya, followed by a series of speciation of C-genome diploids (ca. 1.8-0.9 Mya), which then partook in successive polyploidization events, forming CCDD tetraploids in ca. 0.9 Mya, and stepwise forming BBCC tetraploids between ca. 0.3-0.6 Mya. Inter-genomic translocations between B- and C-genomes were identified in BBCC tetraploid, O. punctata. Distinct FISH (fluorescent in situ hybridization) patterns among three CCDD species were visualized by C-genome-specific probes. B-genome was modified before forming the BBCC tetraploid, O. malampuzhaensis. CONCLUSION: C-genome, shared by all polyploid species in the complex, had experienced different evolutionary history particularly after polyploidization, e.g., inter-genomic exchange in BBCC and genomic invasion in CCDD tetraploids. It diverged from B-genome at 4.8 Mya, then participated in the tetraploid formation spanning from 0.9 to 0.3 Mya, and spread into tropics of the disjunct continents by transcontinentally long-distance dispersal, instead of vicariance, as proposed by this study, given that the continental splitting was much earlier than the C-genome species radiation. We also find reliable evidence indicated that an extinct BB diploid species in Asia was presumptively the direct genomic donor of their sympatric tetraploids

    Polyploid evolution in Oryza officinalis complex of the genus Oryza

    Get PDF
    BACKGROUND: Polyploidization is a prominent process in plant evolution, whereas the mechanism and tempo-spatial process remained poorly understood. Oryza officinalis complex, a polyploid complex in the genus Oryza, could exemplify the issues not only for it covering a variety of ploidy levels, but also for the pantropical geographic pattern of its polyploids in Asia, Africa, Australia and Americas, in which a pivotal genome, the C-genome, witnessed all the polyploidization process. RESULTS: Tracing the C-genome evolutionary history in Oryza officinalis complex, this study revealed the genomic relationships, polyploid forming and diverging times, and diploidization process, based on phylogeny, molecular-clock analyses and fluorescent in situ hybridization using genome-specific probes. Results showed that C-genome split with B-genome at ca. 4.8 Mya, followed by a series of speciation of C-genome diploids (ca. 1.8-0.9 Mya), which then partook in successive polyploidization events, forming CCDD tetraploids in ca. 0.9 Mya, and stepwise forming BBCC tetraploids between ca. 0.3-0.6 Mya. Inter-genomic translocations between B- and C-genomes were identified in BBCC tetraploid, O. punctata. Distinct FISH (fluorescent in situ hybridization) patterns among three CCDD species were visualized by C-genome-specific probes. B-genome was modified before forming the BBCC tetraploid, O. malampuzhaensis. CONCLUSION: C-genome, shared by all polyploid species in the complex, had experienced different evolutionary history particularly after polyploidization, e.g., inter-genomic exchange in BBCC and genomic invasion in CCDD tetraploids. It diverged from B-genome at 4.8 Mya, then participated in the tetraploid formation spanning from 0.9 to 0.3 Mya, and spread into tropics of the disjunct continents by transcontinentally long-distance dispersal, instead of vicariance, as proposed by this study, given that the continental splitting was much earlier than the C-genome species radiation. We also find reliable evidence indicated that an extinct BB diploid species in Asia was presumptively the direct genomic donor of their sympatric tetraploids

    Polyploid evolution in <it>Oryza officinalis </it>complex of the genus <it>Oryza</it>

    No full text
    Abstract Background Polyploidization is a prominent process in plant evolution, whereas the mechanism and tempo-spatial process remained poorly understood. Oryza officinalis complex, a polyploid complex in the genus Oryza, could exemplify the issues not only for it covering a variety of ploidy levels, but also for the pantropical geographic pattern of its polyploids in Asia, Africa, Australia and Americas, in which a pivotal genome, the C-genome, witnessed all the polyploidization process. Results Tracing the C-genome evolutionary history in Oryza officinalis complex, this study revealed the genomic relationships, polyploid forming and diverging times, and diploidization process, based on phylogeny, molecular-clock analyses and fluorescent in situ hybridization using genome-specific probes. Results showed that C-genome split with B-genome at ca. 4.8 Mya, followed by a series of speciation of C-genome diploids (ca. 1.8-0.9 Mya), which then partook in successive polyploidization events, forming CCDD tetraploids in ca. 0.9 Mya, and stepwise forming BBCC tetraploids between ca. 0.3-0.6 Mya. Inter-genomic translocations between B- and C-genomes were identified in BBCC tetraploid, O. punctata. Distinct FISH (fluorescent in situ hybridization) patterns among three CCDD species were visualized by C-genome-specific probes. B-genome was modified before forming the BBCC tetraploid, O. malampuzhaensis. Conclusion C-genome, shared by all polyploid species in the complex, had experienced different evolutionary history particularly after polyploidization, e.g., inter-genomic exchange in BBCC and genomic invasion in CCDD tetraploids. It diverged from B-genome at 4.8 Mya, then participated in the tetraploid formation spanning from 0.9 to 0.3 Mya, and spread into tropics of the disjunct continents by transcontinentally long-distance dispersal, instead of vicariance, as proposed by this study, given that the continental splitting was much earlier than the C-genome species radiation. We also find reliable evidence indicated that an extinct BB diploid species in Asia was presumptively the direct genomic donor of their sympatric tetraploids.</p

    Boosting Electrocatalytic Oxygen Evolution over Ce-Co9S8 Core-Shell Nanoneedle Arrays by Electronic and Architectural Dual Engineering

    No full text
    An dual electronic and architectural engineering strategy is a good way to rationally design earth-abundant and highly efficient electrocatalysts of the oxygen evolution reaction (OER) for sustainable hydrogen-based energy devices. Here, a Ce-doped Co9S8 core-shell nanoneedle array (Ce-Co9S8@CC) supported on a carbon cloth has been designed and developed to accelerate the sluggish kinetics of the OER. Profiting from valance alternative Ce doping, a fine core-shell structure and vertically aligned nanoneedle arrayed architecture, Ce-Co9S8@CC integrates modulated electronic structure, highly exposed active sites, and multidimensional mass diffusion channels; together, these afford a favorable catalyzed OER. Ce-Co9S8@CC exhibits remarkable performance in the OER in an alkaline medium, where the overpotential requires only 242 mV to deliver a current density of 10 mA cm(-2) for the OER; this is 70 mV superior to that of Ce-free Co9S8 catalyst and other counterparts. Good stability and impressive selectivity (nearly 100 % Faradic efficiency) are also demonstrated. When integrated into a two-electrode OER//HER electrolyzer, the as-prepared Ce-Co9S8@CC displays a low operation potential of 1.54 V at 10 mA cm(-2) and long-term stability, thus demonstrating great potential for economical water electrolysis

    Xanthohumol Is a Potent Pan-Inhibitor of Coronaviruses Targeting Main Protease

    No full text
    Coronaviruses cause diseases in humans and livestock. The SARS-CoV-2 is infecting millions of human beings, with high morbidity and mortality worldwide. The main protease (Mpro) of coronavirus plays a pivotal role in viral replication and transcription, which, in theory, is an attractive drug target for antiviral drug development. It has been extensively discussed whether Xanthohumol is able to help COVID-19 patients. Here, we report that Xanthohumol, a small molecule in clinical trials from hops (Humulus lupulus), was a potent pan-inhibitor for various coronaviruses by targeting Mpro, for example, betacoronavirus SARS-CoV-2 (IC50 value of 1.53 μM), and alphacoronavirus PEDV (IC50 value of 7.51 μM). Xanthohumol inhibited Mpro activities in the enzymatical assays, while pretreatment with Xanthohumol restricted the SARS-CoV-2 and PEDV replication in Vero-E6 cells. Therefore, Xanthohumol is a potent pan-inhibitor of coronaviruses and an excellent lead compound for further drug development

    Optimization of Extraction Process, Structure Characterization, and Antioxidant Activity of Polysaccharides from Different Parts of Camellia oleifera Abel

    No full text
    The flowers, leaves, seed cakes and fruit shells of Camellia oleifera are rich in bioactive polysaccharides, which can be used as additives in food and other industries. In this study, a Box&minus;Behnken design was used to optimize the extraction conditions of polysaccharides from C. oleifera flowers (P-CF), leaves (P-CL), seed cakes (P-CC), and fruit shells (P-CS). Under the optimized extraction conditions, the polysaccharide yields of the four polysaccharides were 9.32% &plusmn; 0.11 (P-CF), 7.57% &plusmn; 0.11 (P-CL), 8.69% &plusmn; 0.16 (P-CC), and 7.25% &plusmn; 0.07 (P-CS), respectively. Polysaccharides were mainly composed of mannose, rhamnose, galacturonic acid, glucose, galactose, and xylose, of which the molecular weights ranged from 3.31 kDa to 128.06 kDa. P-CC had a triple helix structure. The antioxidant activities of the four polysaccharides were determined by Fe2+ chelating and free radical scavenging abilities. The results showed that all polysaccharides had antioxidant effects. Among them, P-CF had the strongest antioxidant activity, of which the highest scavenging ability of DPPH&bull;, ABTS&bull;+, and hydroxyl radical could reach 84.19% &plusmn; 2.65, 94.8% &plusmn; 0.22, and 79.97% &plusmn; 3.04, respectively, and the best chelating ability of Fe2+ could reach 44.67% &plusmn; 1.04. Overall, polysaccharides extracted from different parts of C. oleifera showed a certain antioxidant effect, and could be developed as a new type of pure natural antioxidant for food
    corecore