668 research outputs found

    Evidence for electromagnetic granularity in polycrystalline Sm1111 iron-pnictides with enhanced phase purity

    Full text link
    We prepared polycrystalline SmFeAsO1-xFx (Sm1111) bulk samples by sintering and hot isostatic pressing (HIP) in order to study the effects of phase purity and relative density on the intergranular current density. Sintered and HIPped Sm1111 samples are denser with fewer impurity phases, such as SmOF and the grain boundary wetting phase, FeAs. We found quite complex magnetization behavior due to variations of both the inter and intragranular current densities. Removing porosity and reducing second phase content enhanced the intergranular current density, but HIPping reduced Tc and the intragranular current density, due to loss of fluorine and reduction of Tc. We believe that the HIPped samples are amongst the purest polycrystalline 1111 samples yet made. However, their intergranular current densities are still small, providing further evidence that polycrystalline pnictides, like polycrystalline cuprates, are intrinsically granular.Comment: 14 pages, 6 figure

    Measurements of the branching fractions of the inclusive decays D0(D+)→π+π+π−X

    Get PDF
    Using eþe− annihilation data corresponding to an integrated luminosity of 2.93 fb−1 taken at a center-of mass energy of 3.773 GeV with the BESIII detector, we report the first measurements of the branching fractions of the inclusive decays D0 → πþπþπ−X and Dþ → πþπþπ−X, where pions from K0 S decays have been excluded from the πþπþπ− system and X denotes any possible particle combination. The branching fractions of D0ðDþÞ → πþπþπ−X are determined to be BðD0 → πþπþπ−XÞ¼ð17.60 0.11 0.22Þ% and BðDþ → πþπþπ−XÞ¼ð15.25 0.09 0.18Þ%, where the first uncertainties are statistical and the second systematic

    Search for an axion-like particle in J/ψJ/\psi radiative decays

    Full text link
    We search for an axion-like particle (ALP) aa through the process ψ(3686)π+πJ/ψ\psi(3686)\rightarrow\pi^+\pi^-J/\psi, J/ψγaJ/\psi\rightarrow\gamma a, aγγa\rightarrow\gamma\gamma in a data sample with (2708.1±14.5)×106(2708.1\pm14.5)\times10^6 ψ(3686)\psi(3686) events collected by the BESIII detector. No significant ALP signal is observed over the expected background, and the upper limits on the branching fraction of the decay J/ψγaJ/\psi\rightarrow\gamma a and the ALP-photon coupling constant gaγγg_{a\gamma\gamma} are set at the 95\% confidence level in the mass range of 0.165\leq m_a\leq2.84\,\mbox{GeV}/c^2. The limits on B(J/ψγa)\mathcal{B}(J/\psi\rightarrow\gamma a) range from 8.3×1088.3\times10^{-8} to 1.8×1061.8\times10^{-6} over the search region, and the constraints on the ALP-photon coupling are the most stringent to date for 0.165\leq m_a\leq1.468\,\mbox{GeV}/c^2.Comment: 10 pages, 5 figure

    Measurements of the electric and magnetic form factors of the neutron for time-like momentum transfer

    Full text link
    We present the first measurements of the electric and magnetic form factors of the neutron in the time-like (positive q2q^2) region as function of four-momentum transfer. We explored the differential cross sections of the reaction e+enˉne^+e^- \rightarrow \bar{n}n with data collected with the BESIII detector at the BEPCII accelerator, corresponding to an integrated luminosity of 354.6 pb1^{-1} in total at twelve center-of-mass energies between s=2.02.95\sqrt{s} = 2.0 - 2.95 GeV. A relative uncertainty of 18% and 12% for the electric and magnetic form factors, respectively, is achieved at s=2.3935\sqrt{s} = 2.3935 GeV. Our results are comparable in accuracy to those from electron scattering in the comparable space-like (negative q2q^2) region of four-momentum transfer. The electromagnetic form factor ratio RemGE/GMR_{\rm em}\equiv |G_E|/|G_M| is within the uncertainties close to unity. We compare our result on GE|G_E| and GM|G_M| to recent model predictions, and the measurements in the space-like region to test the analyticity of electromagnetic form factors.Comment: main paper: 9 pages, 6 figures, 3 tables; supplement: 9 pages, 28 table

    Updated measurements of the M1 transition ψ(3686)γηc(2S)\psi(3686) \to \gamma \eta_{c}(2S) with ηc(2S)KKˉπ\eta_{c}(2S) \to K \bar{K} \pi

    Full text link
    Based on a data sample of (27.08±0.14)×108 ψ(3686)(27.08 \pm 0.14 ) \times 10^8~\psi(3686) events collected with the BESIII detector at the BEPCII collider, the M1 transition ψ(3686)γηc(2S)\psi(3686) \to \gamma \eta_{c}(2S) with ηc(2S)KKˉπ\eta_{c}(2S) \to K\bar{K}\pi is studied, where KKˉπK\bar{K}\pi is K+Kπ0K^{+} K^{-} \pi^{0} or KS0K±πK_{S}^{0}K^{\pm}\pi^{\mp}. The mass and width of the ηc(2S)\eta_{c}(2S) are measured to be (3637.8±0.8(stat)±0.2(syst))(3637.8 \pm 0.8 (\rm {stat}) \pm 0.2 (\rm {syst})) MeV/c2c^{2} and (10.5±1.7(stat)±3.5(syst))(10.5 \pm 1.7 (\rm {stat}) \pm 3.5 (\rm {syst})) MeV, respectively. The product branching fraction B(ψ(3686)γηc(2S))×B(ηc(2S)KKˉπ)\mathcal{B}\left(\psi(3686) \rightarrow \gamma \eta_{c}(2 S)\right) \times \mathcal{B}(\eta_{c}(2 S) \rightarrow K \bar{K} \pi) is determined to be (0.97±0.06(stat)±0.09(syst))×105(0.97 \pm 0.06 (\rm {stat}) \pm 0.09 (\rm {syst})) \times 10^{-5}. Using BR(ηc(2S)KKˉπ)=(1.860.49+0.68)%\mathcal{BR}(\eta_{c}(2S)\to K\bar{K}\pi)=(1.86^{+0.68}_{-0.49})\%, we obtain the branching fraction of the radiative transition to be BR(ψ(3686)γηc(2S))=(5.2±0.3(stat)±0.5(syst)1.4+1.9(extr))×104\mathcal{BR}(\psi(3686) \to \gamma \eta_{c}(2S)) = (5.2 \pm 0.3 (\rm {stat}) \pm 0.5 (\rm {syst}) ^{+1.9}_{-1.4} (extr)) \times 10^{-4}, where the third uncertainty is due to the quoted BR(ηc(2S)KKˉπ)\mathcal{BR}(\eta_{c}(2S) \to K\bar{K}\pi)

    Search for an invisible muon philic scalar X0X_{0} or vector X1X_{1} via J/ψμ+μ+invisibleJ/\psi\to\mu^+\mu^-+\rm{invisible} decay at BESIII

    Full text link
    A light scalar X0X_{0} or vector X1X_{1} particles have been introduced as a possible explanation for the (g2)μ(g-2)_{\mu} anomaly and dark matter phenomena. Using (8.998±0.039)×109(8.998\pm 0.039)\times10^9 \jpsi events collected by the BESIII detector, we search for a light muon philic scalar X0X_{0} or vector X1X_{1} in the processes J/ψμ+μX0,1J/\psi\to\mu^+\mu^- X_{0,1} with X0,1X_{0,1} invisible decays. No obvious signal is found, and the upper limits on the coupling g0,1g_{0,1}' between the muon and the X0,1X_{0,1} particles are set to be between 1.1×1031.1\times10^{-3} and 1.0×1021.0\times10^{-2} for the X0,1X_{0,1} mass in the range of 1<M(X0,1)<10001<M(X_{0,1})<1000~MeV/c2/c^2 at 90%\% confidence level.Comment: 9 pages 7 figure

    Production of doubly-charged Δ\Delta baryon in e+ee^{+}e^{-} annihilation at energies from 2.3094 to 2.6464 GeV

    Full text link
    The processes e+eΔ++Δˉe^{+}e^{-} \to \Delta^{++}\bar{\Delta}^{--} and e+eΔ++pˉπ+c.c.e^{+}e^{-}\to \Delta^{++} \bar{p} \pi^{-} + c.c. are studied for the first time with 179 pb1179~{\rm pb}^{-1} of e+ee^{+}e^{-} annihilation data collected with the BESIII detector at center-of-mass energies from 2.30942.3094 GeV to 2.64642.6464 GeV. No significant signal for the e+eΔ++Δˉe^{+}e^{-}\to \Delta^{++}\bar{\Delta}^{--} process is observed and the upper limit of the Born cross section is estimated at each energy point. For the process e+eΔ++pˉπ+c.c.e^{+}e^{-} \to \Delta^{++} \bar{p} \pi^{-} + c.c., a significant signal is observed at center-of-mass energies near 2.6454 GeV and the corresponding Born cross section is reported.Comment: 10 pages, 4 figure

    Observation and branching fraction measurement of the decay J ⁣/ ⁣ψpˉΣ+KS0+c.c.J\!/\!\psi \rightarrow \bar{p} \Sigma^{+} K_{S}^{0} + c.c.

    Full text link
    The first observation of the decays J ⁣/ ⁣ψpˉΣ+KS0J\!/\!\psi \rightarrow \bar{p} \Sigma^{+} K_{S}^{0} and J ⁣/ ⁣ψpΣˉKS0J\!/\!\psi \rightarrow p \bar{\Sigma}^{-} K_{S}^{0} is reported using (10087±44)×106(10087\pm44)\times10^{6} J ⁣/ ⁣ψJ\!/\!\psi events recorded by the BESIII detector at the BEPCII storage ring. The branching fractions of each channel are determined to be B(J ⁣/ ⁣ψpˉΣ+KS0)=(1.361±0.006±0.025)×104\mathcal{B}(J\!/\!\psi \rightarrow \bar{p} \Sigma^{+} K_{S}^{0})=(1.361 \pm 0.006 \pm 0.025) \times 10^{-4} and B(J ⁣/ ⁣ψpΣˉKS0)=(1.352±0.006±0.025)×104\mathcal{B}(J\!/\!\psi \rightarrow p \bar{\Sigma}^{-} K_{S}^{0})=(1.352 \pm 0.006 \pm 0.025) \times 10^{-4}. The combined result is B(J ⁣/ ⁣ψpˉΣ+KS0+c.c.)=(2.725±0.009±0.050)×104\mathcal{B}(J\!/\!\psi \rightarrow \bar{p} \Sigma^{+} K_{S}^{0} +c.c.)=(2.725 \pm 0.009 \pm 0.050) \times 10^{-4}, where the first uncertainty is statistical and the second systematic. The results presented are in good agreement with the branching fractions of the isospin partner decay J ⁣/ ⁣ψpKΣˉ0+c.c.J\!/\!\psi \rightarrow p K^- \bar\Sigma^0 + c.c.

    First Observation of a Three-Resonance Structure in e+ee^+e^-\rightarrow{non-open} Charm Hadrons

    Full text link
    We report the measurement of the cross sections for e+ee^+e^-\rightarrow{nOCH} (nOCH stands for non-open charm hadrons) with improved precision at center-of-mass energies from 3.645 to 3.871 GeV. We observe for the first time a three-resonance structure in the energy-dependent lineshape of the cross sections, which are R(3760)\mathcal R(3760), R(3780)\mathcal R(3780) and R(3810)\mathcal R(3810) with significances of 9.4σ9.4\sigma, 15.7σ15.7\sigma, and 9.8σ9.8\sigma, respectively. The R(3810)\mathcal R(3810) is observed for the first time. We found two solutions in analysis of the cross sections. For solution I [solution II], we measure the mass, the total width and the product of electronic width and nOCH decay branching fraction to be (3805.8±1.1±2.7)(3805.8 \pm 1.1 \pm 2.7) [(3805.8±1.1±2.7)(3805.8 \pm 1.1 \pm 2.7)] MeV/c2c^2, (11.6±2.6±1.9)(11.6 \pm 2.6 \pm 1.9) [(11.5±2.5±1.8)(11.5 \pm 2.5 \pm 1.8)] MeV, and (10.8±3.2±2.3)(10.8\pm 3.2\pm 2.3) [(11.0±2.9±2.4)(11.0\pm 2.9\pm 2.4)] eV for the R(3810)\mathcal R(3810), respectively. In addition, we measure the branching fractions B(R(3760){\mathcal B}({\mathcal R}(3760)\rightarrow{nOCH})=(24.5±13.4±27.4)%[(6.8±5.4±7.6)%])=(24.5 \pm 13.4 \pm 27.4)\% [(6.8 \pm 5.4 \pm 7.6)\%] for the first time, and B(R(3780){\mathcal B}(\mathcal R(3780)\rightarrow{nOCH})=(11.6±5.8±7.8)%[(10.3±4.5±6.9)%])=(11.6 \pm 5.8 \pm 7.8)\% [(10.3 \pm 4.5 \pm 6.9)\%]. Moreover, we determine the open-charm (OC) branching fraction B(R{\mathcal B}({\mathcal R}(3760)(3760)\rightarrow{OC})=(75.5±13.4±27.4)%[(93.2±5.4±7.6)%])=(75.5 \pm 13.4 \pm 27.4)\% [(93.2 \pm 5.4 \pm 7.6)\%], which supports the interpretation of R(3760)\mathcal R(3760) as an OC pair molecular state, but contained a simple four-quark state component. The first uncertainties are from fits to the cross sections, and the second are systematic
    corecore