22 research outputs found

    Cancer type-specific modulation of mitochondrial haplogroups in breast, colorectal and thyroid cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mitochondrial DNA (mtDNA) haplogroups and single nucleotide polymorphisms (mtSNP) have been shown to play a role in various human conditions including aging and some neurodegenerative diseases, metabolic diseases and cancer.</p> <p>Methods</p> <p>To investigate whether mtDNA haplogroups contribute to the occurrence of cancer in a specific Chinese population, we have carried out a comprehensive case-control study of mtDNA from large cohorts of patients with three common cancer types, namely, colorectal cancer (n = 108), thyroid cancer (n = 100) and breast cancer (n = 104), in Wenzhou, a southern Chinese city in the Zhejiang Province.</p> <p>Results</p> <p>We found that patients with mtDNA haplogroup M exhibited an increased risk of breast cancer occurrence [OR = 1.77; 95% CI (1.03-3.07); P = 0.040], and that this risk was even more pronounced in a sub-haplogroup of M, D5 [OR = 3.11; 95%CI (1.07-9.06); p = 0.030]. In spite of this, in patients with breast cancer, haplogroup M was decreased in the metastatic group. On the other hand, our results also showed that haplogroup D4a was associated with an increased risk of thyroid cancer [OR = 3.00; 95%CI (1.09-8.29); p = 0.028]. However, no significant correlation has been detected between any mtDNA haplogroups and colorectal cancer occurrence.</p> <p>Conclusion</p> <p>Our investigation indicates that mitochondrial haplogroups could have a tissue-specific, population-specific and stage-specific role in modulating cancer development.</p

    Bio-Inspired Aquaporinz Containing Double-Skinned Forward Osmosis Membrane Synthesized through Layer-by-Layer Assembly

    No full text
    We demonstrated a novel AquaporinZ (AqpZ)-incorporated double-skinned forward osmosis (FO) membrane by layer-by-layer (LbL) assembly strategy. Positively charged poly(ethyleneimine) (PEI) and negatively charged poly(sodium 4-styrenesulfonate) (PSS) were alternately deposited on both the top and bottom surfaces of a hydrolyzed polyacrylonitrile (H-PAN) substrate. Subsequently, an AqpZ-embedded 1,2-dioleloyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dioleoyl-3-trimethylammonium- propane (chloride salt) (DOTAP) supported lipid bilayer (SLB) was formed on PSS-terminated (T-PSS) membrane via vesicle rupture method. The morphology and structure of the biomimetic membranes were characterized by in situ atomic force microscopy (AFM), scanning electron microscope (SEM), Fourier transform infrared spectrometer using the attenuated total reflection technique (ATR-FTIR), and contact angle. Moreover, the FO performance of the resultant membrane was measured by using 2 M MgCl2 solution as draw solution and deionized (DI) water as feed solution, respectively. The membrane with a protein-to-lipid weight ratio (P/L) of 1/50 exhibits 13.2 L/m2h water flux and 3.2 g/m2h reversed flux by using FO mode, as well as 15.6 L/m2h water flux and 3.4 L/m2h reversed flux for PRO mode (the draw solution is placed against the active layer). It was also shown that the SLB layer of the double-skinned FO membrane can increase the surface hydrophilicity and reduce the surface roughness, which leads to an improved anti-fouling performance against humic acid foulant. The current work introduced a new method of fabricating high performance biomimetic FO membrane by combining AqpZ and a double-skinned structure based on LbL assembly

    Botanical characteristics, chemical components, biological activity, and potential applications of mangosteen

    No full text
    Garcinia mangostana L. (Mangosteen), a functional food, belongs to the Garcinaceae family and has various pharmacological effects, including anti-oxidative, anti-inflammatory, anticancer, antidiabetic, and neuroprotective effects. Mangosteen has abundant chemical constituents with powerful pharmacological effects. After searching scientific literature databases, including PubMed, Science Direct, Research Gate, Web of Science, VIP, Wanfang, and CNKI, we summarized the traditional applications, botanical features, chemical composition, and pharmacological effects of mangosteen. Further, we revealed the mechanism by which it improves health and treats disease. These findings provide a theoretical basis for mangosteen’s future clinical use and will aid doctors and researchers who investigate the biological activity and functions of food

    Bioinspired Rotation Microneedles for Accurate Transdermal Positioning and Ultraminimal-Invasive Biomarker Detection with Mechanical Robustness

    No full text
    Microneedle permits transdermal biosensing and drug delivery with minor pain. However, accurate microneedle transdermal positioning with minimal skin deformation remains a significant technical challenge due to inhomogeneous skin topology and discontinuous force applied to the microneedle. Here, we introduce bioinspired rotation microneedles for in vivo accurate microneedle positioning as inspired by honeybees’ stingers. We demonstrate the benefits of rotation microneedles in alleviating skin resistance through finite element analysis, full-thickness porcine validations, and mathematical derivations of microneedle-skin interaction stress fields. The max penetration force was mitigated by up to 45.7% and the force attenuation rate increased to 2.73 times in the holding stage after penetration. A decrease in max skin deflection and a faster deformation recovery introduced by rotation microneedles implied a more precise penetration depth. Furthermore, we applied the rotation microneedles in psoriasis mice, a monogenic disorder animal model, for minimally invasive biological sample extraction and proinflammatory cytokine monitoring. An ultrasensitive detection method is realized by using only one microneedle to achieve cytokine mRNA level determination compared to commonly required biopsies or blood collection. Thus, rotation microneedles permit a simple, rapid, and ultraminimal-invasive method for subcutaneous trace biological sample acquisition and subsequent point-of-care diagnostics with minimal damage to both microneedles and skins

    Optimization of pattern of well in hot dry rock fractured reservoirs through numerical simulation

    No full text
    Objective An enhanced geothermal system (EGS) is a crucial means of extracting thermal energy from hot dry rock reservoirs, and the pattern of well plays a key role in influencing heat extraction efficiency. Currently, there is limited research on pattern of well considering fractured reservoir exploitation models. Methods This paper establishes a numerical model for heat extraction from hot dry rock fractured reservoirs and analyses the impact of four different patterns of wells on EGS heat extraction performance through a comparative analysis of the temperature decrease of the bedrock, heat extraction rate, production temperature, and heat extraction power. Results The results indicate that, compared to vertical wells, horizontal wells have a larger area for fluid heat exchange, allowing for more efficient heat development between fractures. After 30 years of production, considering the case of hydraulic fracturing fracture connectivity, the one injection and two production schemes of horizontal wells exhibit the highest heat extraction efficiency. In the vertical well direction, the temperature influence range is approximately 690 m, with an average temperature decrease of 38.09 K in the bedrock, a heat extraction rate of 24.42%, and a heat extraction power of 3.5 MW. Conclusion The research results provide a theoretical reference for enhancing the heat production of geothermal systems and achieving efficient and sustainable development of hot dry rock resources

    Large HBV Surface Protein-Induced Unfolded Protein Response Dynamically Regulates p27 Degradation in Hepatocellular Carcinoma Progression

    No full text
    Up to 50% of hepatocellular carcinoma (HCC) is caused by hepatitis B virus (HBV) infection, and the surface protein of HBV is essential for the progression of HBV-related HCC. The expression of large HBV surface antigen (LHB) is presented in HBV-associated HCC tissues and is significantly associated with the development of HCC. Gene set enrichment analysis revealed that LHB overexpression regulates the cell cycle process. Excess LHB in HCC cells induced chronic endoplasmic reticulum (ER) stress and was significantly correlated with tumor growth in vivo. Cell cycle analysis showed that cell cycle progression from G1 to S phase was greatly enhanced in vitro. We identified intensive crosstalk between ER stress and cell cycle progression in HCC. As an important regulator of the G1/S checkpoint, p27 was transcriptionally upregulated by transcription factors ATF4 and XBP1s, downstream of the unfolded protein response pathway. Moreover, LHB-induced ER stress promoted internal ribosome-entry-site-mediated selective translation of p27, and E3 ubiquitin ligase HRD1-mediated p27 ubiquitination and degradation. Ultimately, the decrease in p27 protein levels reduced G1/S arrest and promoted the progress of HCC by regulating the cell cycle

    Mitochondrial Common Deletion, a Potential Biomarker for Cancer Occurrence, Is Selected against in Cancer Background: A Meta-Analysis of 38 Studies

    Get PDF
    <div><p>Mitochondrial dysfunction has been long proposed to play a major role in tumorigenesis. Mitochondrial DNA (mtDNA) mutations, especially the mtDNA 4,977 bp deletion has been found in patients of various types of cancer. In order to comprehend the mtDNA 4,977 bp deletion status in various cancer types, we performed a meta-analysis composed of 33 publications, in which a total of 1613 cancer cases, 1516 adjacent normals and 638 healthy controls were included. When all studies were pooled, we found that cancerous tissue carried a lower mtDNA 4,977 bp deletion frequency than adjacent non-cancerous tissue (OR = 0.43, 95% CI = 0.20–0.92, <i>P</i> = 0.03 for heterogeneity test, <i>I<sup>2</sup></i> = 91.5%) among various types of cancer. In the stratified analysis by cancer type the deletion frequency was even lower in tumor tissue than in adjacent normal tissue of breast cancer (OR = 0.19, 95% CI = 0.06–0.61, <i>P</i> = 0.005 for heterogeneity test, <i>I<sup>2</sup></i> = 82.7%). Interestingly, this observation became more significant in the stratified studies with larger sample sizes (OR = 0.70, 95% CI = 0.58–0.86, <i>P</i> = 0.0005 for heterogeneity test, <i>I<sup>2</sup></i> = 95.1%). Furthermore, when compared with the normal tissue from the matched healthy controls, increased deletion frequencies were observed in both adjacent non-cancerous tissue (OR = 3.02, 95% CI = 2.13–4.28, <i>P</i><0.00001 for heterogeneity test, <i>I<sup>2</sup></i> = 53.7%), and cancerous tissue (OR = 1.36, 95% CI = 1.04–1.77, <i>P</i> = 0.02 for heterogeneity test, <i>I<sup>2</sup></i> = 83.5%). This meta-analysis suggests that the mtDNA 4,977 bp deletion is often found in cancerous tissue and thus has the potential to be a biomarker for cancer occurrence in the tissue, but at the same time being selected against in various types of carcinoma tissues. Larger and better-designed studies are still warranted to confirm these findings.</p></div

    Intein-mediated temperature control for complete biosynthesis of sanguinarine and its halogenated derivatives in yeast

    No full text
    Abstract While sanguinarine has gained recognition for antimicrobial and antineoplastic activities, its complex conjugated structure and low abundance in plants impede broad applications. Here, we demonstrate the complete biosynthesis of sanguinarine and halogenated derivatives using highly engineered yeast strains. To overcome sanguinarine cytotoxicity, we establish a splicing intein-mediated temperature-responsive gene expression system (SIMTeGES), a simple strategy that decouples cell growth from product synthesis without sacrificing protein activity. To debottleneck sanguinarine biosynthesis, we identify two reticuline oxidases and facilitated functional expression of flavoproteins and cytochrome P450 enzymes via protein molecular engineering. After comprehensive metabolic engineering, we report the production of sanguinarine at a titer of 448.64 mg L−1. Additionally, our engineered strain enables the biosynthesis of fluorinated sanguinarine, showcasing the biotransformation of halogenated derivatives through more than 15 biocatalytic steps. This work serves as a blueprint for utilizing yeast as a scalable platform for biomanufacturing diverse benzylisoquinoline alkaloids and derivatives
    corecore