15 research outputs found
Mitigating the Trade-Off between Non-Radiative Recombination and Charge Transport to Enable Efficient Ternary Organic Solar Cells
Ternary organic solar cells (OSCs) have attracted intensive studies due to their promising potential for attaining high-performing photovoltaics, whereas there has been an opening challenge in minimizing the open circuit voltage (Voc) loss while retaining the optimal carrier extraction in the multiple mixture absorbers. Here, we systemically investigate a ternary absorber comprised of two acceptors and a donor, in which the resultant Voc and fill factor are varied and determined by the ratios of acceptor components as a result of the unbalance of non-radiative recombination rates and charge transport. The transient absorption spectroscopy and electroluminescence techniques verify two distinguishable charge-transfer (CT) states in the ternary absorber, and the mismatch of non-radiative recombination rates of those two CT states is demonstrated to be associated with the Voc deficit, whilst the high-emissive acceptor molecule delivers inferior electron mobility, resulting in poor charge transport and a subpar fill factor. These findings enable us to optimize the mixture configuration for attaining the maximal-performing devices. Our results not only provide insight into maximizing the photovoltage of organic solar cells but can also motivate researchers to further unravel the photophysical mechanisms underlying the intermolecular electronic states of organic semiconductors
Nonmonotonic Self-Deformation of Cell Nuclei on Topological Surfaces with Micropillar Array
Cells
respond to the mechanical signals from their surroundings
and integrate physiochemical signals to initiate intricate mechanochemical
processes. While many studies indicate that topological features of
biomaterials impact cellular behaviors profoundly, little research
has focused on the nuclear response to a mechanical force generated
by a topological surface. Here, we fabricated a polymeric micropillar
array with an appropriate dimension to induce a severe self-deformation
of cell nuclei and investigated how the nuclear shape changed over
time. Intriguingly, the nuclei of mesenchymal stem cells (MSCs) on
the polyÂ(lactide-<i>co</i>-glycolide) (PLGA) micropillars
exhibited a significant initial deformation followed by a partial
recovery, which led to an “overshoot” phenomenon. The
treatment of cytochalasin D suppressed the recovery of nuclei, which
indicated the involvement of actin cytoskeleton in regulating the
recovery at the second stage of nuclear deformation. Additionally,
we found that MSCs exhibited different overshoot extents from their
differentiated lineage, osteoblasts. These findings enrich the understanding
of the role of the cell nucleus in mechanotransduction. As the first
quantitative report on nonmonotonic kinetic process of self-deformation
of a cell organelle on biomaterials with unique topological surfaces,
this study sheds new insight into cell–biomaterial interactions
N, S and Transition-Metal Co-Doped Graphene Nanocomposites as High-Performance Catalyst for Glucose Oxidation in a Direct Glucose Alkaline Fuel Cell
In this work, reduced graphene oxide (rGO) nanocomposites doped with nitrogen (N), sulfur (S) and transitional metal (Ni, Co, Fe) were synthesized by using a simple one-step in-situ hydrothermal approach. Electrochemical characterization showed that rGO-NS-Ni was the most prominent catalyst for glucose oxidation. The current density of the direct glucose alkaline fuel cell (DGAFC) with rGO-NS-Ni as the anode catalyst reached 148.0 mA/cm2, which was 40.82% higher than the blank group. The DGAFC exhibited a maximum power density of 48 W/m2, which was more than 2.08 folds than that of blank group. The catalyst was further characterized by SEM, XPS and Raman. It was speculated that the boosted performance was due to the synergistic effect of N, S-doped rGO and the metallic redox couples, (Ni2+/Ni3+, Co2+/Co3+ and Fe2+/Fe3+), which created more active sites and accelerated electron transfer. This research can provide insights for the development of environmental benign catalysts and promote the application of the DGAFCs
Machine Learning Assisted Wearable Wireless Device for Sleep Apnea Syndrome Diagnosis
Sleep apnea syndrome (SAS) is a common but underdiagnosed health problem related to impaired quality of life and increased cardiovascular risk. In order to solve the problem of complicated and expensive operation procedures for clinical diagnosis of sleep apnea, here we propose a small and low-cost wearable apnea diagnostic system. The system uses a photoplethysmography (PPG) optical sensor to collect human pulse wave signals and blood oxygen saturation synchronously. Then multiscale entropy and random forest algorithms are used to process the PPG signal for analysis and diagnosis of sleep apnea. The SAS determination is based on the comprehensive diagnosis of the PPG signal and blood oxygen saturation signal, and the blood oxygen is used to exclude the error induced by non-pathological factors. The performance of the system is compared with the Compumedics Grael PSG (Polysomnography) sleep monitoring system. This simple diagnostic system provides a feasible technical solution for portable and low-cost screening and diagnosis of SAS patients with a high accuracy of over 85%
Design and aligner-assisted fast fabrication of a microfluidic platform for quasi-3D cell studies on an elastic polymer
While most studies of mechanical stimulation of cells are focused on two-dimensional (2D) and three-dimensional (3D) systems, it is rare to study the effects of cyclic stretching on cells under a quasi-3D microenvironment as a linkage between 2D and 3D. Herein, we report a new method to prepare an elastic membrane with topographic microstructures and integrate the membrane into a microfluidic chip. The fabrication difficulty lay not only in the preparation of microstructures but also in the alignment and bonding of the patterned membrane to other layers. To resolve the problem, we designed and assembled a fast aligner that is cost-effective and convenient to operate. To enable quasi-3D microenvironment of cells, we fabricated polydimethylsiloxane (PDMS) microwell arrays (formed by micropillars of a few microns in diameter) with the microwell diameters close to the cell sizes. An appropriate plasma treatment was found to afford a coating-free approach to enable cell adhesion on PDMS. We examined three types of cells in 2D, quasi-3D, and 3D microenvironments; the cell adhesion results showed that quasi-3D cells behaved between 2D and 3D cells. We also constructed transgenic human mesenchymal stem cells (hMSCs); under cyclic stretching, the visualizable live hMSCs in microwells were found to orientate differently from in a 3D Matrigel matrix and migrate differently from on a 2D flat plate. This study not only provides valuable tools for microfabrication of a microfluidic device for cell studies, but also inspires further studies of the topological effects of biomaterials on cells
Proteomic characterization identifies clinically relevant subgroups of soft tissue sarcoma
Abstract Soft tissue sarcoma is a broad family of mesenchymal malignancies exhibiting remarkable histological diversity. We portray the proteomic landscape of 272 soft tissue sarcomas representing 12 major subtypes. Hierarchical classification finds the similarity of proteomic features between angiosarcoma and epithelial sarcoma, and elevated expression of SHC1 in AS and ES is correlated with poor prognosis. Moreover, proteomic clustering classifies patients of soft tissue sarcoma into 3 proteomic clusters with diverse driven pathways and clinical outcomes. In the proteomic cluster featured with the high cell proliferation rate, APEX1 and NPM1 are found to promote cell proliferation and drive the progression of cancer cells. The classification based on immune signatures defines three immune subtypes with distinctive tumor microenvironments. Further analysis illustrates the potential association between immune evasion markers (PD-L1 and CD80) and tumor metastasis in soft tissue sarcoma. Overall, this analysis uncovers sarcoma-type-specific changes in proteins, providing insights about relationships of soft tissue sarcoma