309 research outputs found

    Tubulointerstitial Macrophage Accumulation is Regulated by Sequentially Expressed Osteopontin and Macrophage Colony-Stimulating Factor: Implication for the Role of Atorvastatin

    Get PDF
    Infiltration and local proliferation are known factors that contribute to tubulointerstitial macrophage accumulation. This study explored the time course of these two contributors' roles as tubulointerstitial inflammation and fibrosis progressing, and evaluated the mechanisms of the protective effect of atorvastatin. Unilateral ureteral obstructive (UUO) rats were treated with atorvastatin (10 mg/Kg) or vehicle. Expression of osteopontin (OPN) and macrophage colony-stimulating factor (M-CSF) was evaluated by RT-PCR and immunohistochemistry. Immunohistochemistry staining of ED1 was used to assess macrophage accumulation in interstitium. Histological evaluation was performed to semiquantify tubulointerstitial fibrosis. The results showed that on day 3 after UUO operation, OPN expression significantly increased and positively correlated with the number of the interstitial ED1(+) cells, while on day 10, M-CSF expression upregulated and correlated with interstitial ED1(+) cells. In atorvastatin treatment group, the increments of these two factors were attenuated significantly at the two time points, respectively. ED1(+) cell accumulation and fibrosis also ameliorated in the treatment group. For all the samples of UUO and treatment group on day 10, ED1(+) cells also correlated with interstitial fibrosis scores. The results suggest that OPN may induce the early macrophage/monocyte infiltration and M-CSF may play an important role in regulating macrophage accumulation in later stage of UUO nephropathy. Statin treatment decreases interstitial inflammation and fibrosis, and this renoprotective effect may be mediated by downregulating the expression of OPN and M-CSF

    Role of LOX-1 and ROS in oxidized low-density lipoprotein induced epithelial-mesenchymal transition of NRK52E

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the effect of oxidized low density lipoprotein receptor-1 (LOX-1) on tubular epithelial-mesenchymal transition (TEMT) induced by oxidized low-density lipoprotein (ox-LDL) and its mechanism.</p> <p>Methods</p> <p>NRK-52E cells were incubated with ox-LDL (0, 25, 50, and 100 μg/ml) for 24 hours or pre-treated with the chemical inhibitor of the LOX-1 receptor polyinosinic acid (poly I) and carrageenan or the antioxidant N-acetyl-L-cysteine (NAC), the cells were then exposed to 50 μg/ml of ox-LDL.The expression of LOX-I, E-cadherin, α-smooth muscle actin (α-SMA) and reactive oxygen species (ROS) were analyzed by real-time PCR, western blotting analysis, immunofluorescence and confocal laser scanning microscopy.</p> <p>Results</p> <p>Ox-LDL increased the expression of LOX-1 mRNA and protein in a dose-dependent manner from 0 to 100 μg/ml (P < 0.05). Following the increase in the LOX-1 protein level, the lipid intake, ROS generation and α-SMA expression increased; however, the E-cadherin level decreased. The pre-treatment with poly I or carrageenan or NAC significantly inhibited the LOX-1 expression, α-SMA expression, the lipid intake and ROS generation and reversed decrease of E-cadherin expression induced by ox-LDL. Meanwhile, the ROS generation were associated with a increase in the LOX-1 expression. The α-SMA expression was positively correlated with the ROS generation and LOX-1 expression, and the E-cadherin expression was negatively correlated with the ROS generation and LOX-1 expression.</p> <p>Conclusions</p> <p>LOX-1 and ROS may play a important role in epithelial-mesenchymal transition of NRK52E induced by OX-LDL.</p

    1,1′-(2,5-Dimethyl­thio­phene-3,4-di­yl)diethanone

    Get PDF
    The title compound, C10H12O2S, crystallizes with four mol­ecules in the asymmetric unit. The main conformational difference between these mol­ecules is the orientation of the acetyl groups with respect to the ring. Whereas one acetyl group is only slightly twisted with respect to the thio­phene ring [C—C—C—O torsion angles = 165.7 (4), −164.6 (4), 164.3 (4) and −163.6 (4)°], the other acetyl group is markly twisted out of the ring plane [C—C—C—O torsion angles = −61.2 (6), 61.3 (7), −59.7 (7) and 59.9 (6)°]. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions into infinite chains along the c axis

    Effect of magnetic Fe3O4 nanoparticles with 2-methoxyestradiol on the cell-cycle progression and apoptosis of myelodysplastic syndrome cells

    Get PDF
    This study aims to evaluate the potential benefit of combination therapy of 2-methoxyestradiol (2ME) and magnetic nanoparticles of Fe3O4 (MNPs-Fe3O4) on myelodysplastic syndrome (MDS) SKM-1 cells and its underlying mechanisms. The effect of the unique properties of tetraheptylammonium-capped MNPs-Fe3O4 with 2ME on cytotoxicity was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell-cycle distribution and apoptosis were assessed by flow cytometry. The expression of cell-cycle marker protein was measured by Western blotting. Growth inhibition rate of SKM-1 cells treated with the 2ME-loaded MNPs-Fe3O4 was enhanced when compared with 2ME alone. 2ME led to an increase of caspase-3 expression, followed by apoptosis, which was significantly increased when combined with an MNPs-Fe3O4 carrier. Moreover, the copolymer of 2ME with MNPs- Fe3O4 blocked a nearly two-fold increase in SKM-1 cells located in G2/M phase than in 2ME alone, which may be associated with an accompanying increase of p21 as well as a decrease in cyclin B1 and cdc2 expression, but there was no obvious difference between the MNPs-Fe3O4 and control group. These findings suggest that the unique properties of MNPs-Fe3O4 as a carrier for 2ME, a new anticancer agent currently in clinical trials, may be a logical strategy to enhance the therapeutic activity of MDS
    corecore