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r é s u m é

On donne une démonstration analytique de l’inégalité isopérimétrique quantitative dans le 
plan, et on établit une estimation de la borne supérieure de la constante en maximisant la 
norme L∞ du gradient de la solution de l’équation de Poisson.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For any Borel set E in Rn , n ≥ 2, let P (E) denote E ’s perimeter, which is defined via

P (E) := sup

⎧⎨
⎩

∫
E

divφ(x)dx : φ ∈ C∞
c (Rn), |φ| ≤ 1

⎫⎬
⎭ .

The classical isoperimetric inequality states that if E is a Borel set in Rn , n ≥ 2, with finite Lebesgue measure, i.e., m(E) < ∞, 
then it holds that

nω
1/n
n m(E)(n−1)/n ≤ P (E), (1)

where ωn is the measure of the unit ball in Rn; see [18]. It is well known that equality holds in (1) if and only if E is a ball.
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The isoperimetric inequality has been proved in a variety of ways. For example, in the original paper by De Giorgi [9], 
the isoperimetric inequality was proved for the first time in the general framework of sets of finite perimeter. More proofs 
can be referred to, e.g., [4,12], etc. In this paper we focus on a quantitative version of the isoperimetric inequality. Supposing 
that E is a Borel set in Rn with 0 < m(E) < ∞, n ≥ 2, we define the isoperimetric deficit as

D(E) := P (E)

nω
1/n
n m(E)(n−1)/n

− 1 = P (E) − P (B)

P (B)
,

where B is a ball having the same volume as E , we also define the Fraenkel asymmetry index as

λ(E) := min

{
m(E�(x + B))

m(E)

∣∣∣∣x ∈R
n
}

.

The sharp quantitative isoperimetric inequality states that there exists such a constant C = C(n) > 0 that

λ(E)2

D(E)
≤ C(n). (2)

This inequality was conjectured by Hall [15] in 1992. In 2008, Fusco, Maggi and Pratelli [11] came up with the first proof 
of the sharp quantitative isoperimetric inequality; see also Figalli, Maggi and Pratelli [13] and Cicalese and Leonardi [7] for 
different proofs. Fusco and Julin [14] recently have proved a stronger form of the quantitative isoperimetric inequality. After 
that, some efforts have been done to find the best constant in (2), that is

Cbest := min

{
C > 0 : λ(E)2

D(E)
≤ C,∀E is a Borel set in R

n
}

. (3)

In fact, this is a challenging problem and few results are known. Only in dimension n = 2, but within the class of convex 
sets, the minimizers for the above problem have been identified by Campi [3], and later by Alvino, Ferone, Nitsch [1] via 
a slightly different approach. Notice that it was given in [1] that in these cases Cbest � 2.465574. For further developments, 
we refer to Cicalese and Leonardi [6]. However, for general sets, the problem of finding the best constant is still open; 
see [8].

Recently, Cicalese and Leonardi [7] have solved Hall’s conjecture concerning the best constant for the quantitative isoperi-
metric inequality in R2 in the small asymmetry regime, by showing that for any Borel set E ⊂ R

2 with finite measure, it 
holds that

D(E) ≥ π

8(4 − π)
λ(E)2 + o(λ(E)2).

In [8], Cicalese and Leonardi further determined the best constants for the asymptotic estimate of the quantitative isoperi-
metric inequality in R2, and established existence and regularity of minimizers for the problem (3).

In this paper, following the approach from [17], we consider the problem (2) in the plane, and give an estimation of the 
upper bound of the constant C via maximizing the L∞-norm of the gradient of solutions to the Poisson equation.

Theorem 1. For any Borel set E ⊂R
2 with finite Lebesgue measure, it holds that λ(E)2 ≤ 16D(E).

The key of the proof is to establish explicit bound of ||∇uχE ||L∞(R2) , where uχE is the solution to the Poisson equation 
�uχE = −χE on R2 for those E having λ(E) > 0. Here and in what follows, for any measurable function f ∈ L1(R2) ∩
L∞(R2), we let u f be the solution to the Poisson equation �u f = − f on R2, which satisfies lim sup|x|→∞

u f (x)
|x| < +∞. 

Notice that the sharp upper bounds of ||∇uE ||L∞(Rn) for general E have been found by Cianchi [5].

Lemma 2. For any Borel set E ⊂ R
2 with 0 < m(E) < ∞, let uχE be the solution to the Poisson equation �uχE = −χE in R2 . Then it 

holds that

‖∇uχE (x)‖L∞(R2) ≤ m(E)1/2

2
√

π

(√
1 − λ(E)

2
+

√
1 + λ(E)

2
− 1

)
. (4)

By using Lemma 2 and a duality argument from [17], we shall see that for any Borel set E with finite Lebesgue measure, 
it holds

m(E)1/2 ≤ P (E)

2
√

π

(√
1 − λ(E)

2
+

√
1 + λ(E)

2
− 1

)
. (5)

When dealing with the capacity increasing as a function of λ(E), Hall, Hayman and Weitsman [16] proved that
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P (E)2 ≥ 4π(1 + kλ(E)2/4)m(E),

where k = 1/4 if E is connected and k = 1/6 otherwise. Notice that, the inequality (5) improves the above inequality since

4π m(E) ≤ P (E)2

(√
1 − λ(E)

2
+

√
1 + λ(E)

2
− 1

)2

≤ P (E)2

1 + λ(E)2/8
.

This improvement can also be used to improve the constant k2 in [16, Theorem 2.1]; we leave the details for interested 
readers.

2. Proofs

Proof of Lemma 2. We first assume that E is an open set. Notice that each component of ∇uχE is harmonic in E and R2 \ E , 
|∇u|2 is continuous and sub-harmonic in E and R2 \ E . Therefore, we have that

‖∇uχE ‖L∞(R2) = max
x∈∂ E

|∇uχE (x)|.
Up to a translation and rotation, we can restrict ourselves to maximizing −(∂/∂x1)uχE (0); see Cianchi [5]. That is

− ∂

∂x1
uχE (0) = 1

2π

∫
R2

χE(y)y1|y|−2 dy. (6)

First of all, for any open set E , we do a little adjustment to E to get a new open set Ẽ , which satisfies

Ẽ :=
{

E, if E ⊂ R
2+

(E ∩R
2+) ∪ F , otherwise.

Here, R2+ := {
x ∈ R

2 : x1 > 0
}

and F ⊂ R
2+ is an open set, m(F ) = m(E \R2+) and F ∩ E ∩R

2+ = ∅. It is obvious that we can 
increase the value of −(∂/∂x1)uχE (0) through this kind of adjustment, which means

− ∂

∂x1
uχE (0) ≤ 1

2π

∫
R2

χẼ(y)y1|y|−2dy.

In this way, we just need to consider the open set E ⊂R
2+ . Considering the special form of the integral on the right-hand 

side of (6), it is reasonable to define the set S(E),

S(E) =
{

x ∈R
2 : x1 ≥ 0,2x1|x|−2 >

√
π/m(E)

}
.

Clearly, S(E) is a disk in R2 satisfying m(S(E)) = m(E). Then

max
F : m(F )=m(E)

(
− ∂

∂x1
uχF (0)

)
≤ 1

2π

∫
R2

χS(E)(y)y1|y|−2 dy.

Letting c = m(E) in the following calculation, we find that:

1

2π

∫
R2

χS(E)(y)y1|y|−2 dy = 1

2π

√
c/π∫

0

2π∫
0

r(
√

c/π + r cos θ)

r2 + 2r
√

c/π cos θ + c/π
dθ dr

= 1

π

√
c/π∫

0

r dr

+∞∫
0

√
c/π + r(1 − t2)/(1 + t2)

r2 + 2r
√

c/π(1 − t2)/(1 + t2) + c/π
× 2

1 + t2
dt

= 1

π

√
c/π∫

0

rπ
√

π/c dr =
√

m(E)

2
√

π
.

Consequently,

‖∇uχE ‖L∞(R2) ≤ ∣∣∇uχS(E)
(0)

∣∣ = − ∂
uχS(E)

(0) = 1√ m(E)1/2. (7)

∂x1 2 π
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Let a = λ(E) and suppose that 0 < a < 2. Let us estimate ‖∇uχE ‖L∞(R2) . By the above arguments, we see that, 
up to rotation and translation, it suffices to estimate −∂uχE /∂x1(0), and we may assume that E ⊂ R

2+ . Let B0 :={
x ∈R

2 : |x|2 < 2
√

m(E)/πx1
}

and write

− ∂

∂x1
uχE (0) = 1

2π

∫
E

y1

|y|2 dy = 1

2π

⎛
⎜⎝ ∫

B0∩E

y1

|y|2 dy +
∫

Bc
0∩E

y1

|y|2 dy

⎞
⎟⎠ .

By the inequality (7), we see that∫
B0∩E

y1

|y|2 dy ≤ √
πm(B0 ∩ E)1/2 = √

π
√

m(B0) − m(Ec ∩ B0) = √
π

√
m(B0) − m(E ∩ Bc

0),

since m(E) = m(B0), and∫
Bc

0∩E

y1

|y|2 dy =
∫

B0∪(Bc
0∩E)

y1

|y|2 dy −
∫
B0

y1

|y|2 dy ≤ √
πm(B0 ∪ (Bc

0 ∩ E))1/2 − √
πm(B0)

1/2.

Combining the above estimates, we find that

− ∂

∂x1
uχE (0) ≤ 1

2
√

π

(√
m(B0) − m(E ∩ Bc

0) +
√

m(B0) + m(Bc
0 ∩ E) − m(B0)

1/2
)

.

Notice that the function

f (x) = √
m(E) − x + √

m(E) + x − m(E)1/2

is decreasing on [0, m(E)]. Since m(E ∩ Bc
0) ≥ m(E)λ(E)/2, we finally see that

‖∇uχE ‖L∞(R2) ≤ m(E)1/2

2
√

π

(√
1 − λ(E)

2
+

√
1 + λ(E)

2
− 1

)
.

For general cases, E being measurable, we choose a sequence of open sets {E j} j∈N such that E ⊂ E j and lim j→∞ m(E j \
E) = 0. Then we have

‖∇uχE ‖L∞(R2) ≤ ‖∇uχE j
‖L∞(R2) + ‖∇uχE j\E ‖L∞(R2)

≤ m(E j)
1/2

2
√

π

(√
1 − λ(E j)

2
+

√
1 + λ(E j)

2
− 1

)
+

∥∥∥∥∥∥∥
∫

E j\E

1

2π | · −y| dy

∥∥∥∥∥∥∥
L∞(R2)

.

Letting j → ∞, we can conclude that

‖∇uχE ‖L∞(R2) ≤ m(E)1/2

2
√

π

(√
1 − λ(E)

2
+

√
1 + λ(E)

2
− 1

)
,

which completes the proof. �
We are now in position to prove the main result.

Proof of Theorem 1. We begin by recalling that the perimeter of the measurable set E satisfies

P (E) = inf
ϕk

⎧⎨
⎩lim inf

k→∞

∫
Rn

|∇ϕk|dx : ϕk ∈ C1(R2),ϕk → χE in L1(R2) and |ϕk| ≤ 1

⎫⎬
⎭ ,

see [2,10]. Therefore we can choose a subsequence, denoting still by {ϕk}k∈N for simplicity, such that ‖∇ϕk‖L1(R2) → P (E)

and ϕk → χE in L1(R2).
Let uχE be the solution to the Poisson equation �uχE = −χE . Then for each ϕk , it holds that∫

ϕk dx = −
∫

2

�uχE · ϕkdx =
∫

2

∇uχE · ∇ϕkdx.
E R R
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Letting k → ∞ we find that

m(E) = lim
k→∞

∫
E

ϕk dx ≤ lim
k→∞

||∇uχE ||L∞(R2)

∫
R2

|Dϕk|dx = ||∇uχE ||L∞(R2) P (E),

This and Lemma 2 further imply that

m(E)1/2 ≤ P (E)

2
√

π

(√
1 − λ(E)

2
+

√
1 + λ(E)

2
− 1

)
.

Let B be a ball with the same measure as E . Then we have

P (E) − P (B)

P (B)
≥ 2

√
πm(E)1/2√

1 − λ(E)
2 +

√
1 + λ(E)

2 − 1
· 1

P (B)
− 1 = 1√

1 − λ(E)
2 +

√
1 + λ(E)

2 − 1
− 1,

which implies that

D(E)

λ(E)2
≥ 1

λ(E)2

⎛
⎜⎝ 1√

1 − λ(E)
2 +

√
1 + λ(E)

2 − 1
− 1

⎞
⎟⎠ .

A direct calculation shows that the function

1

a2

⎛
⎜⎝ 1√

1 − a
2 +

√
1 + a

2 − 1
− 1

⎞
⎟⎠ ,

defined on (0, 2), attains a minimum of 1
16 at the origin, i.e. a = 0. Therefore, we conclude that D(E)

λ(E)2 ≥ 1
16 , as desired. �
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